from transformers import AutoModelForImageClassification import torch from PIL import Image from torchvision import transforms model = AutoModelForImageClassification.from_pretrained(".") model.eval() transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor() ]) def predict(img_path): img = Image.open(img_path).convert("RGB") img = transform(img).unsqueeze(0) with torch.no_grad(): outputs = model(img) probs = torch.softmax(outputs.logits, dim=1) label = probs.argmax().item() return label, float(probs.max())