kobzaond commited on
Commit
0818fcc
·
1 Parent(s): d946e8d

Initial upload of alquistcoder_F1_MAIN_DPO model files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|/tool_call|>": 200026,
3
+ "<|/tool|>": 200024,
4
+ "<|assistant|>": 200019,
5
+ "<|end|>": 200020,
6
+ "<|system|>": 200022,
7
+ "<|tag|>": 200028,
8
+ "<|tool_call|>": 200025,
9
+ "<|tool_response|>": 200027,
10
+ "<|tool|>": 200023,
11
+ "<|user|>": 200021
12
+ }
chat_template.jinja ADDED
@@ -0,0 +1 @@
 
 
1
+ {% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}
config.json ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Phi3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_phi3.Phi3Config",
9
+ "AutoModelForCausalLM": "microsoft/Phi-4-mini-instruct--modeling_phi3.Phi3ForCausalLM",
10
+ "AutoTokenizer": "microsoft/Phi-4-mini-instruct--Xenova/gpt-4o"
11
+ },
12
+ "bos_token_id": 199999,
13
+ "embd_pdrop": 0.0,
14
+ "eos_token_id": 199999,
15
+ "full_attn_mod": 1,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 3072,
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 8192,
20
+ "interpolate_factor": 1,
21
+ "lm_head_bias": false,
22
+ "max_position_embeddings": 131072,
23
+ "mlp_bias": false,
24
+ "model_type": "phi3",
25
+ "num_attention_heads": 24,
26
+ "num_hidden_layers": 32,
27
+ "num_key_value_heads": 8,
28
+ "original_max_position_embeddings": 4096,
29
+ "pad_token_id": 199999,
30
+ "partial_rotary_factor": 0.75,
31
+ "resid_pdrop": 0.0,
32
+ "rms_norm_eps": 1e-05,
33
+ "rope_scaling": {
34
+ "long_factor": [
35
+ 1,
36
+ 1.118320672,
37
+ 1.250641126,
38
+ 1.398617824,
39
+ 1.564103225,
40
+ 1.74916897,
41
+ 1.956131817,
42
+ 2.187582649,
43
+ 2.446418898,
44
+ 2.735880826,
45
+ 3.059592084,
46
+ 3.421605075,
47
+ 3.826451687,
48
+ 4.279200023,
49
+ 4.785517845,
50
+ 5.351743533,
51
+ 5.984965424,
52
+ 6.693110555,
53
+ 7.485043894,
54
+ 8.370679318,
55
+ 9.36110372,
56
+ 10.4687158,
57
+ 11.70738129,
58
+ 13.09260651,
59
+ 14.64173252,
60
+ 16.37415215,
61
+ 18.31155283,
62
+ 20.47818807,
63
+ 22.90118105,
64
+ 25.61086418,
65
+ 28.64115884,
66
+ 32.03,
67
+ 32.1,
68
+ 32.13,
69
+ 32.23,
70
+ 32.6,
71
+ 32.61,
72
+ 32.64,
73
+ 32.66,
74
+ 32.7,
75
+ 32.71,
76
+ 32.93,
77
+ 32.97,
78
+ 33.28,
79
+ 33.49,
80
+ 33.5,
81
+ 44.16,
82
+ 47.77
83
+ ],
84
+ "short_factor": [
85
+ 1.0,
86
+ 1.0,
87
+ 1.0,
88
+ 1.0,
89
+ 1.0,
90
+ 1.0,
91
+ 1.0,
92
+ 1.0,
93
+ 1.0,
94
+ 1.0,
95
+ 1.0,
96
+ 1.0,
97
+ 1.0,
98
+ 1.0,
99
+ 1.0,
100
+ 1.0,
101
+ 1.0,
102
+ 1.0,
103
+ 1.0,
104
+ 1.0,
105
+ 1.0,
106
+ 1.0,
107
+ 1.0,
108
+ 1.0,
109
+ 1.0,
110
+ 1.0,
111
+ 1.0,
112
+ 1.0,
113
+ 1.0,
114
+ 1.0,
115
+ 1.0,
116
+ 1.0,
117
+ 1.0,
118
+ 1.0,
119
+ 1.0,
120
+ 1.0,
121
+ 1.0,
122
+ 1.0,
123
+ 1.0,
124
+ 1.0,
125
+ 1.0,
126
+ 1.0,
127
+ 1.0,
128
+ 1.0,
129
+ 1.0,
130
+ 1.0,
131
+ 1.0,
132
+ 1.0
133
+ ],
134
+ "type": "longrope"
135
+ },
136
+ "rope_theta": 10000.0,
137
+ "sliding_window": 262144,
138
+ "tie_word_embeddings": true,
139
+ "torch_dtype": "float32",
140
+ "transformers_version": "4.52.2",
141
+ "use_cache": false,
142
+ "vocab_size": 200064
143
+ }
configuration_phi3.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """Phi-3 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ class Phi3Config(PretrainedConfig):
26
+ r"""
27
+ This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
28
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
29
+ defaults will yield a similar configuration to that of the
30
+ [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+ Args:
36
+ vocab_size (`int`, *optional*, defaults to 32064):
37
+ Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
38
+ `inputs_ids` passed when calling [`Phi3Model`].
39
+ hidden_size (`int`, *optional*, defaults to 3072):
40
+ Dimension of the hidden representations.
41
+ intermediate_size (`int`, *optional*, defaults to 8192):
42
+ Dimension of the MLP representations.
43
+ num_hidden_layers (`int`, *optional*, defaults to 32):
44
+ Number of hidden layers in the Transformer decoder.
45
+ num_attention_heads (`int`, *optional*, defaults to 32):
46
+ Number of attention heads for each attention layer in the Transformer decoder.
47
+ num_key_value_heads (`int`, *optional*):
48
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
49
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
50
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
51
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
52
+ by meanpooling all the original heads within that group. For more details checkout [this
53
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
54
+ `num_attention_heads`.
55
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
56
+ Dropout probability for mlp outputs.
57
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
58
+ The dropout ratio for the embeddings.
59
+ attention_dropout (`float`, *optional*, defaults to 0.0):
60
+ The dropout ratio after computing the attention scores.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
64
+ The maximum sequence length that this model might ever be used with.
65
+ original_max_position_embeddings (`int`, *optional*, defaults to 4096):
66
+ The maximum sequence length that this model was trained with. This is used to determine the size of the
67
+ original RoPE embeddings when using long scaling.
68
+ initializer_range (`float`, *optional*, defaults to 0.02):
69
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
70
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
71
+ The epsilon value used for the RMSNorm.
72
+ use_cache (`bool`, *optional*, defaults to `True`):
73
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
74
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
75
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
76
+ Whether to tie weight embeddings
77
+ rope_theta (`float`, *optional*, defaults to 10000.0):
78
+ The base period of the RoPE embeddings.
79
+ rope_scaling (`dict`, *optional*):
80
+ The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
81
+ contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
82
+ the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
83
+ divided by the number of attention heads divided by 2.
84
+ partial_rotary_factor (`float`, *optional*, defaults to 1.0):
85
+ Percentage of the query and keys which will have rotary embedding. Must be between 0.0 and 1.0.
86
+ bos_token_id (`int`, *optional*, defaults to 1):
87
+ The id of the "beginning-of-sequence" token.
88
+ eos_token_id (`int`, *optional*, defaults to 32000):
89
+ The id of the "end-of-sequence" token.
90
+ pad_token_id (`int`, *optional*, defaults to 32000):
91
+ The id of the padding token.
92
+ sliding_window (`int`, *optional*):
93
+ Sliding window attention window size. If `None`, no sliding window is applied.
94
+
95
+ Example:
96
+
97
+ ```python
98
+ >>> from transformers import Phi3Model, Phi3Config
99
+
100
+ >>> # Initializing a Phi-3 style configuration
101
+ >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
102
+
103
+ >>> # Initializing a model from the configuration
104
+ >>> model = Phi3Model(configuration)
105
+
106
+ >>> # Accessing the model configuration
107
+ >>> configuration = model.config
108
+ ```"""
109
+
110
+ model_type = "phi3"
111
+ keys_to_ignore_at_inference = ["past_key_values"]
112
+
113
+ def __init__(
114
+ self,
115
+ vocab_size=32064,
116
+ hidden_size=3072,
117
+ intermediate_size=8192,
118
+ num_hidden_layers=32,
119
+ num_attention_heads=32,
120
+ num_key_value_heads=None,
121
+ resid_pdrop=0.0,
122
+ embd_pdrop=0.0,
123
+ attention_dropout=0.0,
124
+ hidden_act="silu",
125
+ max_position_embeddings=4096,
126
+ original_max_position_embeddings=4096,
127
+ initializer_range=0.02,
128
+ rms_norm_eps=1e-5,
129
+ use_cache=True,
130
+ tie_word_embeddings=False,
131
+ rope_theta=10000.0,
132
+ rope_scaling=None,
133
+ partial_rotary_factor=1.0,
134
+ bos_token_id=1,
135
+ eos_token_id=32000,
136
+ pad_token_id=32000,
137
+ sliding_window=None,
138
+ **kwargs,
139
+ ):
140
+ self.vocab_size = vocab_size
141
+ self.hidden_size = hidden_size
142
+ self.intermediate_size = intermediate_size
143
+ self.num_hidden_layers = num_hidden_layers
144
+ self.num_attention_heads = num_attention_heads
145
+
146
+ if num_key_value_heads is None:
147
+ num_key_value_heads = num_attention_heads
148
+
149
+ self.num_key_value_heads = num_key_value_heads
150
+ self.resid_pdrop = resid_pdrop
151
+ self.embd_pdrop = embd_pdrop
152
+ self.attention_dropout = attention_dropout
153
+ self.hidden_act = hidden_act
154
+ self.max_position_embeddings = max_position_embeddings
155
+ self.original_max_position_embeddings = original_max_position_embeddings
156
+ self.initializer_range = initializer_range
157
+ self.rms_norm_eps = rms_norm_eps
158
+ self.use_cache = use_cache
159
+ self.rope_theta = rope_theta
160
+ self.rope_scaling = rope_scaling
161
+ self.partial_rotary_factor = partial_rotary_factor
162
+ self._rope_scaling_adjustment()
163
+ self._rope_scaling_validation()
164
+ self.sliding_window = sliding_window
165
+
166
+ super().__init__(
167
+ bos_token_id=bos_token_id,
168
+ eos_token_id=eos_token_id,
169
+ pad_token_id=pad_token_id,
170
+ tie_word_embeddings=tie_word_embeddings,
171
+ **kwargs,
172
+ )
173
+
174
+ def _rope_scaling_adjustment(self):
175
+ """
176
+ Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
177
+ """
178
+ if self.rope_scaling is None:
179
+ return
180
+
181
+ rope_scaling_type = self.rope_scaling.get("type", None)
182
+
183
+ # For backward compatibility if previous version used "su" or "yarn"
184
+ if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
185
+ self.rope_scaling["type"] = "longrope"
186
+
187
+ def _rope_scaling_validation(self):
188
+ """
189
+ Validate the `rope_scaling` configuration.
190
+ """
191
+ if self.rope_scaling is None:
192
+ return
193
+
194
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
195
+ raise ValueError(
196
+ "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
197
+ f"got {self.rope_scaling}"
198
+ )
199
+ rope_scaling_type = self.rope_scaling.get("type", None)
200
+ rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
201
+ rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
202
+ if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
203
+ raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
204
+ if not (
205
+ isinstance(rope_scaling_short_factor, list)
206
+ and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
207
+ ):
208
+ raise ValueError(
209
+ f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
210
+ )
211
+ rotary_ndims = int(self.hidden_size // self.num_attention_heads * self.partial_rotary_factor)
212
+ if not len(rope_scaling_short_factor) == rotary_ndims // 2:
213
+ raise ValueError(
214
+ f"`rope_scaling`'s short_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_short_factor)}"
215
+ )
216
+ if not (
217
+ isinstance(rope_scaling_long_factor, list)
218
+ and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
219
+ ):
220
+ raise ValueError(
221
+ f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
222
+ )
223
+ if not len(rope_scaling_long_factor) == rotary_ndims // 2:
224
+ raise ValueError(
225
+ f"`rope_scaling`'s long_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_long_factor)}"
226
+ )
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 199999,
4
+ "eos_token_id": [
5
+ 200020,
6
+ 199999
7
+ ],
8
+ "pad_token_id": 199999,
9
+ "transformers_version": "4.52.2"
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors.index.json ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 17802473472
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_up_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.1.mlp.gate_up_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
21
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
22
+ "model.layers.10.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
23
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
24
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
25
+ "model.layers.10.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
26
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.11.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.11.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.12.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.12.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.13.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.13.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.14.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.14.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.15.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.15.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.16.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.16.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.17.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.17.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
69
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
70
+ "model.layers.18.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
71
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
72
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.18.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
75
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
76
+ "model.layers.19.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
77
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
78
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
79
+ "model.layers.19.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
80
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
81
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
82
+ "model.layers.2.mlp.gate_up_proj.weight": "model-00001-of-00004.safetensors",
83
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
84
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
85
+ "model.layers.2.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
86
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
87
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
88
+ "model.layers.20.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
89
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
90
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
91
+ "model.layers.20.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
92
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
93
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
94
+ "model.layers.21.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
95
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
96
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
97
+ "model.layers.21.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
98
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
99
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
100
+ "model.layers.22.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
101
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
102
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
103
+ "model.layers.22.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
104
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
105
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
106
+ "model.layers.23.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
107
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
108
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
109
+ "model.layers.23.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
110
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
111
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
112
+ "model.layers.24.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
113
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
114
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
115
+ "model.layers.24.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
116
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
118
+ "model.layers.25.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
119
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
120
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.25.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
122
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
123
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
124
+ "model.layers.26.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
125
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.26.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.27.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.27.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
134
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.28.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.28.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.29.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.29.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
147
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
148
+ "model.layers.3.mlp.gate_up_proj.weight": "model-00001-of-00004.safetensors",
149
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
150
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
151
+ "model.layers.3.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
152
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
153
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
154
+ "model.layers.30.mlp.gate_up_proj.weight": "model-00004-of-00004.safetensors",
155
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
156
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.30.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
159
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
160
+ "model.layers.31.mlp.gate_up_proj.weight": "model-00004-of-00004.safetensors",
161
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
162
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
163
+ "model.layers.31.self_attn.qkv_proj.weight": "model-00004-of-00004.safetensors",
164
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
165
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
166
+ "model.layers.4.mlp.gate_up_proj.weight": "model-00001-of-00004.safetensors",
167
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
168
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
169
+ "model.layers.4.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
170
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
171
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
172
+ "model.layers.5.mlp.gate_up_proj.weight": "model-00001-of-00004.safetensors",
173
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
174
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
175
+ "model.layers.5.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
176
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
177
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
178
+ "model.layers.6.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
179
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
180
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
181
+ "model.layers.6.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
182
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
183
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
184
+ "model.layers.7.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
185
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
186
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
187
+ "model.layers.7.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
188
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
189
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
190
+ "model.layers.8.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
191
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
192
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
193
+ "model.layers.8.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
194
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
195
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
196
+ "model.layers.9.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
197
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
198
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
199
+ "model.layers.9.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
200
+ "model.norm.weight": "model-00004-of-00004.safetensors"
201
+ }
202
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": true,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "199999": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "200018": {
15
+ "content": "<|endofprompt|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "200019": {
23
+ "content": "<|assistant|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "200020": {
31
+ "content": "<|end|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": true,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "200021": {
39
+ "content": "<|user|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "200022": {
47
+ "content": "<|system|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "200023": {
55
+ "content": "<|tool|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "200024": {
63
+ "content": "<|/tool|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "200025": {
71
+ "content": "<|tool_call|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "200026": {
79
+ "content": "<|/tool_call|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "200027": {
87
+ "content": "<|tool_response|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": true,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "200028": {
95
+ "content": "<|tag|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ }
102
+ },
103
+ "bos_token": "<|endoftext|>",
104
+ "clean_up_tokenization_spaces": false,
105
+ "eos_token": "<|endoftext|>",
106
+ "extra_special_tokens": {},
107
+ "model_max_length": 131072,
108
+ "pad_token": "<|endoftext|>",
109
+ "tokenizer_class": "GPT2Tokenizer",
110
+ "unk_token": "<|endoftext|>"
111
+ }
trainer_state.json ADDED
@@ -0,0 +1,559 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 2.0,
6
+ "eval_steps": 500,
7
+ "global_step": 356,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.056338028169014086,
14
+ "grad_norm": 574.27978515625,
15
+ "learning_rate": 6.25e-07,
16
+ "logits/chosen": 2.945640802383423,
17
+ "logits/rejected": 3.0515265464782715,
18
+ "logps/chosen": -246.39541625976562,
19
+ "logps/rejected": -195.46109008789062,
20
+ "loss": 0.9304,
21
+ "rewards/accuracies": 0.5218750238418579,
22
+ "rewards/chosen": 0.03325582295656204,
23
+ "rewards/margins": 0.014068150892853737,
24
+ "rewards/rejected": 0.019187677651643753,
25
+ "step": 10
26
+ },
27
+ {
28
+ "epoch": 0.11267605633802817,
29
+ "grad_norm": 267.4449462890625,
30
+ "learning_rate": 1.3194444444444446e-06,
31
+ "logits/chosen": 3.0365357398986816,
32
+ "logits/rejected": 3.0756676197052,
33
+ "logps/chosen": -231.8340606689453,
34
+ "logps/rejected": -196.01499938964844,
35
+ "loss": 0.5293,
36
+ "rewards/accuracies": 0.737500011920929,
37
+ "rewards/chosen": 1.023498773574829,
38
+ "rewards/margins": 1.6332218647003174,
39
+ "rewards/rejected": -0.6097229719161987,
40
+ "step": 20
41
+ },
42
+ {
43
+ "epoch": 0.16901408450704225,
44
+ "grad_norm": 168.65689086914062,
45
+ "learning_rate": 2.0138888888888893e-06,
46
+ "logits/chosen": 3.038414478302002,
47
+ "logits/rejected": 3.0314807891845703,
48
+ "logps/chosen": -265.27825927734375,
49
+ "logps/rejected": -199.1730499267578,
50
+ "loss": 0.1929,
51
+ "rewards/accuracies": 0.925000011920929,
52
+ "rewards/chosen": 4.1361799240112305,
53
+ "rewards/margins": 6.971987724304199,
54
+ "rewards/rejected": -2.835808277130127,
55
+ "step": 30
56
+ },
57
+ {
58
+ "epoch": 0.22535211267605634,
59
+ "grad_norm": 37.93267822265625,
60
+ "learning_rate": 2.7083333333333334e-06,
61
+ "logits/chosen": 3.0692856311798096,
62
+ "logits/rejected": 3.1041903495788574,
63
+ "logps/chosen": -245.3774871826172,
64
+ "logps/rejected": -207.87789916992188,
65
+ "loss": 0.1002,
66
+ "rewards/accuracies": 0.9671875238418579,
67
+ "rewards/chosen": 6.395417213439941,
68
+ "rewards/margins": 13.0038480758667,
69
+ "rewards/rejected": -6.608429908752441,
70
+ "step": 40
71
+ },
72
+ {
73
+ "epoch": 0.28169014084507044,
74
+ "grad_norm": 129.71878051757812,
75
+ "learning_rate": 3.4027777777777783e-06,
76
+ "logits/chosen": 2.943250894546509,
77
+ "logits/rejected": 2.9869542121887207,
78
+ "logps/chosen": -245.9439239501953,
79
+ "logps/rejected": -202.8123321533203,
80
+ "loss": 0.1375,
81
+ "rewards/accuracies": 0.973437488079071,
82
+ "rewards/chosen": 7.993535041809082,
83
+ "rewards/margins": 19.0964412689209,
84
+ "rewards/rejected": -11.102909088134766,
85
+ "step": 50
86
+ },
87
+ {
88
+ "epoch": 0.3380281690140845,
89
+ "grad_norm": 57.64502716064453,
90
+ "learning_rate": 4.097222222222222e-06,
91
+ "logits/chosen": 3.0049643516540527,
92
+ "logits/rejected": 3.0770554542541504,
93
+ "logps/chosen": -236.73410034179688,
94
+ "logps/rejected": -210.151611328125,
95
+ "loss": 0.1722,
96
+ "rewards/accuracies": 0.965624988079071,
97
+ "rewards/chosen": 9.21152114868164,
98
+ "rewards/margins": 22.748985290527344,
99
+ "rewards/rejected": -13.53746509552002,
100
+ "step": 60
101
+ },
102
+ {
103
+ "epoch": 0.39436619718309857,
104
+ "grad_norm": 105.868408203125,
105
+ "learning_rate": 4.791666666666668e-06,
106
+ "logits/chosen": 3.0406033992767334,
107
+ "logits/rejected": 3.0739083290100098,
108
+ "logps/chosen": -256.1812744140625,
109
+ "logps/rejected": -204.35446166992188,
110
+ "loss": 0.1129,
111
+ "rewards/accuracies": 0.979687511920929,
112
+ "rewards/chosen": 8.951081275939941,
113
+ "rewards/margins": 21.80655860900879,
114
+ "rewards/rejected": -12.85547924041748,
115
+ "step": 70
116
+ },
117
+ {
118
+ "epoch": 0.4507042253521127,
119
+ "grad_norm": 168.75357055664062,
120
+ "learning_rate": 4.998524282731094e-06,
121
+ "logits/chosen": 3.0504136085510254,
122
+ "logits/rejected": 3.0491514205932617,
123
+ "logps/chosen": -255.90316772460938,
124
+ "logps/rejected": -206.5497283935547,
125
+ "loss": 0.3368,
126
+ "rewards/accuracies": 0.96875,
127
+ "rewards/chosen": 8.498771667480469,
128
+ "rewards/margins": 22.880569458007812,
129
+ "rewards/rejected": -14.381797790527344,
130
+ "step": 80
131
+ },
132
+ {
133
+ "epoch": 0.5070422535211268,
134
+ "grad_norm": 109.43980407714844,
135
+ "learning_rate": 4.991300473502437e-06,
136
+ "logits/chosen": 3.0595602989196777,
137
+ "logits/rejected": 3.1263351440429688,
138
+ "logps/chosen": -228.88070678710938,
139
+ "logps/rejected": -218.99783325195312,
140
+ "loss": 0.3032,
141
+ "rewards/accuracies": 0.9624999761581421,
142
+ "rewards/chosen": 6.379992485046387,
143
+ "rewards/margins": 28.722070693969727,
144
+ "rewards/rejected": -22.34208106994629,
145
+ "step": 90
146
+ },
147
+ {
148
+ "epoch": 0.5633802816901409,
149
+ "grad_norm": 128.98760986328125,
150
+ "learning_rate": 4.978074903220964e-06,
151
+ "logits/chosen": 3.1774604320526123,
152
+ "logits/rejected": 3.181511402130127,
153
+ "logps/chosen": -228.3056640625,
154
+ "logps/rejected": -222.18038940429688,
155
+ "loss": 0.2029,
156
+ "rewards/accuracies": 0.9781249761581421,
157
+ "rewards/chosen": 5.856657028198242,
158
+ "rewards/margins": 34.18266677856445,
159
+ "rewards/rejected": -28.326007843017578,
160
+ "step": 100
161
+ },
162
+ {
163
+ "epoch": 0.6197183098591549,
164
+ "grad_norm": 144.1073455810547,
165
+ "learning_rate": 4.958879433443904e-06,
166
+ "logits/chosen": 3.218785047531128,
167
+ "logits/rejected": 3.1809394359588623,
168
+ "logps/chosen": -243.4155731201172,
169
+ "logps/rejected": -236.49868774414062,
170
+ "loss": 0.2134,
171
+ "rewards/accuracies": 0.9765625,
172
+ "rewards/chosen": 6.719731330871582,
173
+ "rewards/margins": 35.10533905029297,
174
+ "rewards/rejected": -28.385604858398438,
175
+ "step": 110
176
+ },
177
+ {
178
+ "epoch": 0.676056338028169,
179
+ "grad_norm": 149.68939208984375,
180
+ "learning_rate": 4.933760307739277e-06,
181
+ "logits/chosen": 3.1437926292419434,
182
+ "logits/rejected": 3.1433277130126953,
183
+ "logps/chosen": -255.87796020507812,
184
+ "logps/rejected": -231.52182006835938,
185
+ "loss": 0.2745,
186
+ "rewards/accuracies": 0.981249988079071,
187
+ "rewards/chosen": 6.636951446533203,
188
+ "rewards/margins": 37.604583740234375,
189
+ "rewards/rejected": -30.967632293701172,
190
+ "step": 120
191
+ },
192
+ {
193
+ "epoch": 0.7323943661971831,
194
+ "grad_norm": 171.0680389404297,
195
+ "learning_rate": 4.90277804028108e-06,
196
+ "logits/chosen": 3.206712245941162,
197
+ "logits/rejected": 3.2256839275360107,
198
+ "logps/chosen": -261.3406982421875,
199
+ "logps/rejected": -228.3511505126953,
200
+ "loss": 0.5352,
201
+ "rewards/accuracies": 0.964062511920929,
202
+ "rewards/chosen": 4.778416633605957,
203
+ "rewards/margins": 33.36115646362305,
204
+ "rewards/rejected": -28.58274269104004,
205
+ "step": 130
206
+ },
207
+ {
208
+ "epoch": 0.7887323943661971,
209
+ "grad_norm": 118.76382446289062,
210
+ "learning_rate": 4.866007270065345e-06,
211
+ "logits/chosen": 3.2129406929016113,
212
+ "logits/rejected": 3.227287769317627,
213
+ "logps/chosen": -246.7953643798828,
214
+ "logps/rejected": -230.45651245117188,
215
+ "loss": 0.2311,
216
+ "rewards/accuracies": 0.9765625,
217
+ "rewards/chosen": 0.6871539354324341,
218
+ "rewards/margins": 36.90045166015625,
219
+ "rewards/rejected": -36.213294982910156,
220
+ "step": 140
221
+ },
222
+ {
223
+ "epoch": 0.8450704225352113,
224
+ "grad_norm": 198.268310546875,
225
+ "learning_rate": 4.823536581098262e-06,
226
+ "logits/chosen": 3.1713156700134277,
227
+ "logits/rejected": 3.152228355407715,
228
+ "logps/chosen": -238.29159545898438,
229
+ "logps/rejected": -238.2996826171875,
230
+ "loss": 0.2612,
231
+ "rewards/accuracies": 0.96875,
232
+ "rewards/chosen": 1.5464673042297363,
233
+ "rewards/margins": 41.4525146484375,
234
+ "rewards/rejected": -39.90605163574219,
235
+ "step": 150
236
+ },
237
+ {
238
+ "epoch": 0.9014084507042254,
239
+ "grad_norm": 191.44915771484375,
240
+ "learning_rate": 4.775468288989545e-06,
241
+ "logits/chosen": 3.2888169288635254,
242
+ "logits/rejected": 3.2170681953430176,
243
+ "logps/chosen": -251.0401153564453,
244
+ "logps/rejected": -236.00479125976562,
245
+ "loss": 0.51,
246
+ "rewards/accuracies": 0.971875011920929,
247
+ "rewards/chosen": 2.7297756671905518,
248
+ "rewards/margins": 42.41936492919922,
249
+ "rewards/rejected": -39.68959426879883,
250
+ "step": 160
251
+ },
252
+ {
253
+ "epoch": 0.9577464788732394,
254
+ "grad_norm": 73.10994720458984,
255
+ "learning_rate": 4.7219181944651695e-06,
256
+ "logits/chosen": 3.2599377632141113,
257
+ "logits/rejected": 3.2560737133026123,
258
+ "logps/chosen": -245.1952667236328,
259
+ "logps/rejected": -241.4735565185547,
260
+ "loss": 0.313,
261
+ "rewards/accuracies": 0.973437488079071,
262
+ "rewards/chosen": -0.8346878290176392,
263
+ "rewards/margins": 44.581295013427734,
264
+ "rewards/rejected": -45.415985107421875,
265
+ "step": 170
266
+ },
267
+ {
268
+ "epoch": 1.0112676056338028,
269
+ "grad_norm": 71.17866516113281,
270
+ "learning_rate": 4.663015304393279e-06,
271
+ "logits/chosen": 3.3155758380889893,
272
+ "logits/rejected": 3.3333241939544678,
273
+ "logps/chosen": -270.6006774902344,
274
+ "logps/rejected": -241.6360321044922,
275
+ "loss": 0.338,
276
+ "rewards/accuracies": 0.9736841917037964,
277
+ "rewards/chosen": 0.171695277094841,
278
+ "rewards/margins": 45.20180130004883,
279
+ "rewards/rejected": -45.03010177612305,
280
+ "step": 180
281
+ },
282
+ {
283
+ "epoch": 1.0676056338028168,
284
+ "grad_norm": 113.73174285888672,
285
+ "learning_rate": 4.59890152099534e-06,
286
+ "logits/chosen": 3.508065700531006,
287
+ "logits/rejected": 3.5083301067352295,
288
+ "logps/chosen": -266.78387451171875,
289
+ "logps/rejected": -252.5698699951172,
290
+ "loss": 0.8076,
291
+ "rewards/accuracies": 0.964062511920929,
292
+ "rewards/chosen": 10.96754264831543,
293
+ "rewards/margins": 63.106483459472656,
294
+ "rewards/rejected": -52.138938903808594,
295
+ "step": 190
296
+ },
297
+ {
298
+ "epoch": 1.123943661971831,
299
+ "grad_norm": 0.890201985836029,
300
+ "learning_rate": 4.5297312999912625e-06,
301
+ "logits/chosen": 3.5750420093536377,
302
+ "logits/rejected": 3.5598015785217285,
303
+ "logps/chosen": -244.08615112304688,
304
+ "logps/rejected": -249.61984252929688,
305
+ "loss": 0.4625,
306
+ "rewards/accuracies": 0.9765625,
307
+ "rewards/chosen": 8.597976684570312,
308
+ "rewards/margins": 65.22010803222656,
309
+ "rewards/rejected": -56.62213897705078,
310
+ "step": 200
311
+ },
312
+ {
313
+ "epoch": 1.180281690140845,
314
+ "grad_norm": 204.70803833007812,
315
+ "learning_rate": 4.455671278502042e-06,
316
+ "logits/chosen": 3.6519992351531982,
317
+ "logits/rejected": 3.6381404399871826,
318
+ "logps/chosen": -240.0857696533203,
319
+ "logps/rejected": -238.0441131591797,
320
+ "loss": 0.653,
321
+ "rewards/accuracies": 0.9546874761581421,
322
+ "rewards/chosen": 6.305617332458496,
323
+ "rewards/margins": 53.15886688232422,
324
+ "rewards/rejected": -46.8532600402832,
325
+ "step": 210
326
+ },
327
+ {
328
+ "epoch": 1.236619718309859,
329
+ "grad_norm": 139.86141967773438,
330
+ "learning_rate": 4.376899873606336e-06,
331
+ "logits/chosen": 3.622997283935547,
332
+ "logits/rejected": 3.6359076499938965,
333
+ "logps/chosen": -259.12725830078125,
334
+ "logps/rejected": -250.89501953125,
335
+ "loss": 0.9057,
336
+ "rewards/accuracies": 0.9453125,
337
+ "rewards/chosen": 4.471914291381836,
338
+ "rewards/margins": 51.15581130981445,
339
+ "rewards/rejected": -46.683895111083984,
340
+ "step": 220
341
+ },
342
+ {
343
+ "epoch": 1.2929577464788733,
344
+ "grad_norm": 94.85035705566406,
345
+ "learning_rate": 4.293606852518101e-06,
346
+ "logits/chosen": 3.6598830223083496,
347
+ "logits/rejected": 3.594897508621216,
348
+ "logps/chosen": -263.00079345703125,
349
+ "logps/rejected": -248.59524536132812,
350
+ "loss": 0.3918,
351
+ "rewards/accuracies": 0.9750000238418579,
352
+ "rewards/chosen": 2.2544591426849365,
353
+ "rewards/margins": 56.7413444519043,
354
+ "rewards/rejected": -54.48688507080078,
355
+ "step": 230
356
+ },
357
+ {
358
+ "epoch": 1.3492957746478873,
359
+ "grad_norm": 37.788360595703125,
360
+ "learning_rate": 4.205992875420742e-06,
361
+ "logits/chosen": 3.57995343208313,
362
+ "logits/rejected": 3.5664329528808594,
363
+ "logps/chosen": -243.8499755859375,
364
+ "logps/rejected": -252.65353393554688,
365
+ "loss": 0.4873,
366
+ "rewards/accuracies": 0.9781249761581421,
367
+ "rewards/chosen": 7.1952104568481445,
368
+ "rewards/margins": 64.06478118896484,
369
+ "rewards/rejected": -56.86956787109375,
370
+ "step": 240
371
+ },
372
+ {
373
+ "epoch": 1.4056338028169013,
374
+ "grad_norm": 159.25875854492188,
375
+ "learning_rate": 4.114269012059169e-06,
376
+ "logits/chosen": 3.5491080284118652,
377
+ "logits/rejected": 3.510200023651123,
378
+ "logps/chosen": -253.5936279296875,
379
+ "logps/rejected": -254.4651336669922,
380
+ "loss": 0.3683,
381
+ "rewards/accuracies": 0.9624999761581421,
382
+ "rewards/chosen": 4.560586452484131,
383
+ "rewards/margins": 59.49503707885742,
384
+ "rewards/rejected": -54.9344482421875,
385
+ "step": 250
386
+ },
387
+ {
388
+ "epoch": 1.4619718309859155,
389
+ "grad_norm": 113.43865966796875,
390
+ "learning_rate": 4.018656233254278e-06,
391
+ "logits/chosen": 3.4692349433898926,
392
+ "logits/rejected": 3.3723576068878174,
393
+ "logps/chosen": -253.46249389648438,
394
+ "logps/rejected": -268.2179870605469,
395
+ "loss": 0.3905,
396
+ "rewards/accuracies": 0.984375,
397
+ "rewards/chosen": 3.9269375801086426,
398
+ "rewards/margins": 74.34013366699219,
399
+ "rewards/rejected": -70.41320037841797,
400
+ "step": 260
401
+ },
402
+ {
403
+ "epoch": 1.5183098591549296,
404
+ "grad_norm": 36.17473602294922,
405
+ "learning_rate": 3.919384878564902e-06,
406
+ "logits/chosen": 3.488018035888672,
407
+ "logits/rejected": 3.4679126739501953,
408
+ "logps/chosen": -248.9741668701172,
409
+ "logps/rejected": -282.92840576171875,
410
+ "loss": 0.5658,
411
+ "rewards/accuracies": 0.9781249761581421,
412
+ "rewards/chosen": 4.083906650543213,
413
+ "rewards/margins": 77.73112487792969,
414
+ "rewards/rejected": -73.647216796875,
415
+ "step": 270
416
+ },
417
+ {
418
+ "epoch": 1.5746478873239438,
419
+ "grad_norm": 177.54251098632812,
420
+ "learning_rate": 3.816694101379631e-06,
421
+ "logits/chosen": 3.6568634510040283,
422
+ "logits/rejected": 3.6167445182800293,
423
+ "logps/chosen": -240.26895141601562,
424
+ "logps/rejected": -263.4219665527344,
425
+ "loss": 0.3476,
426
+ "rewards/accuracies": 0.979687511920929,
427
+ "rewards/chosen": 4.189328193664551,
428
+ "rewards/margins": 66.97871398925781,
429
+ "rewards/rejected": -62.78938674926758,
430
+ "step": 280
431
+ },
432
+ {
433
+ "epoch": 1.6309859154929578,
434
+ "grad_norm": 76.29850006103516,
435
+ "learning_rate": 3.7108312927753533e-06,
436
+ "logits/chosen": 3.5761330127716064,
437
+ "logits/rejected": 3.5349583625793457,
438
+ "logps/chosen": -256.83697509765625,
439
+ "logps/rejected": -257.34063720703125,
440
+ "loss": 0.2007,
441
+ "rewards/accuracies": 0.987500011920929,
442
+ "rewards/chosen": 3.5510315895080566,
443
+ "rewards/margins": 67.4579849243164,
444
+ "rewards/rejected": -63.906944274902344,
445
+ "step": 290
446
+ },
447
+ {
448
+ "epoch": 1.6873239436619718,
449
+ "grad_norm": 88.87206268310547,
450
+ "learning_rate": 3.6020514855304856e-06,
451
+ "logits/chosen": 3.4625442028045654,
452
+ "logits/rejected": 3.4353599548339844,
453
+ "logps/chosen": -246.8657684326172,
454
+ "logps/rejected": -262.365966796875,
455
+ "loss": 0.3359,
456
+ "rewards/accuracies": 0.9765625,
457
+ "rewards/chosen": -1.413503885269165,
458
+ "rewards/margins": 65.82698059082031,
459
+ "rewards/rejected": -67.240478515625,
460
+ "step": 300
461
+ },
462
+ {
463
+ "epoch": 1.7436619718309858,
464
+ "grad_norm": 109.3917007446289,
465
+ "learning_rate": 3.4906167397286643e-06,
466
+ "logits/chosen": 3.4818034172058105,
467
+ "logits/rejected": 3.438699722290039,
468
+ "logps/chosen": -248.93112182617188,
469
+ "logps/rejected": -257.42694091796875,
470
+ "loss": 0.4265,
471
+ "rewards/accuracies": 0.9828125238418579,
472
+ "rewards/chosen": 0.5807734131813049,
473
+ "rewards/margins": 62.88755416870117,
474
+ "rewards/rejected": -62.306793212890625,
475
+ "step": 310
476
+ },
477
+ {
478
+ "epoch": 1.8,
479
+ "grad_norm": 88.23355102539062,
480
+ "learning_rate": 3.3767955114330586e-06,
481
+ "logits/chosen": 3.3789494037628174,
482
+ "logits/rejected": 3.329315662384033,
483
+ "logps/chosen": -258.67291259765625,
484
+ "logps/rejected": -259.5810546875,
485
+ "loss": 0.4489,
486
+ "rewards/accuracies": 0.9624999761581421,
487
+ "rewards/chosen": -2.7831504344940186,
488
+ "rewards/margins": 59.0428466796875,
489
+ "rewards/rejected": -61.82598876953125,
490
+ "step": 320
491
+ },
492
+ {
493
+ "epoch": 1.856338028169014,
494
+ "grad_norm": 1.0168672800064087,
495
+ "learning_rate": 3.2608620059521935e-06,
496
+ "logits/chosen": 3.38688325881958,
497
+ "logits/rejected": 3.349194288253784,
498
+ "logps/chosen": -233.11666870117188,
499
+ "logps/rejected": -270.48590087890625,
500
+ "loss": 0.5576,
501
+ "rewards/accuracies": 0.979687511920929,
502
+ "rewards/chosen": -4.500494480133057,
503
+ "rewards/margins": 67.32182312011719,
504
+ "rewards/rejected": -71.82231140136719,
505
+ "step": 330
506
+ },
507
+ {
508
+ "epoch": 1.9126760563380283,
509
+ "grad_norm": 106.62237548828125,
510
+ "learning_rate": 3.14309551725535e-06,
511
+ "logits/chosen": 3.401437759399414,
512
+ "logits/rejected": 3.3626091480255127,
513
+ "logps/chosen": -247.9010009765625,
514
+ "logps/rejected": -256.19097900390625,
515
+ "loss": 0.4024,
516
+ "rewards/accuracies": 0.979687511920929,
517
+ "rewards/chosen": 0.5352304577827454,
518
+ "rewards/margins": 63.979896545410156,
519
+ "rewards/rejected": -63.444664001464844,
520
+ "step": 340
521
+ },
522
+ {
523
+ "epoch": 1.9690140845070423,
524
+ "grad_norm": 159.5343475341797,
525
+ "learning_rate": 3.0237797551289228e-06,
526
+ "logits/chosen": 3.4421494007110596,
527
+ "logits/rejected": 3.4059250354766846,
528
+ "logps/chosen": -229.91134643554688,
529
+ "logps/rejected": -252.29019165039062,
530
+ "loss": 0.6959,
531
+ "rewards/accuracies": 0.971875011920929,
532
+ "rewards/chosen": 0.6608916521072388,
533
+ "rewards/margins": 60.5278205871582,
534
+ "rewards/rejected": -59.86692428588867,
535
+ "step": 350
536
+ }
537
+ ],
538
+ "logging_steps": 10,
539
+ "max_steps": 712,
540
+ "num_input_tokens_seen": 0,
541
+ "num_train_epochs": 4,
542
+ "save_steps": 500,
543
+ "stateful_callbacks": {
544
+ "TrainerControl": {
545
+ "args": {
546
+ "should_epoch_stop": false,
547
+ "should_evaluate": false,
548
+ "should_log": false,
549
+ "should_save": true,
550
+ "should_training_stop": false
551
+ },
552
+ "attributes": {}
553
+ }
554
+ },
555
+ "total_flos": 0.0,
556
+ "train_batch_size": 4,
557
+ "trial_name": null,
558
+ "trial_params": null
559
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff