DrakeBlaze commited on
Commit
7cd2a73
·
verified ·
1 Parent(s): 98187fe

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -16
README.md CHANGED
@@ -1,31 +1,50 @@
1
  ---
2
  license: mit
3
  language:
4
- - en
 
 
 
5
  metrics:
6
- - accuracy
7
- - f1
 
 
8
  tags:
9
- - >-
10
- retinal-disease-detection medical-imaging - fundus-images - mobilenetv2
 
 
11
  - classification
 
 
 
12
  ---
13
- RetinaVision-MNet is a custom-trained MobileNetV2-based deep learning model for multi-class retinal disease detection.
14
- It predicts 10 retinal conditions from fundus images and generates Grad-CAM heatmaps for interpretable diagnosis.
15
- The model was trained from scratch and is hosted on Hugging Face due to GitHub size limits.
16
 
17
- Key Features
 
18
 
19
- 10-class retinal disease classification
20
 
21
- MobileNetV2 backbone (lightweight + high accuracy)
 
 
22
 
23
- Grad-CAM visual explanations
 
 
 
 
 
 
 
24
 
25
- Trained from scratch on curated dataset
26
 
27
- Optimized for FastAPI deployment
28
 
29
- Usage
 
30
 
31
- Download the model file from the Files and Versions tab and load it into your application.
 
1
  ---
2
  license: mit
3
  language:
4
+ - en
5
+ base_model: mobilenetv2
6
+ datasets:
7
+ - custom
8
  metrics:
9
+ - accuracy
10
+ - f1
11
+ pipeline_tag: image-classification
12
+ library_name: tensorflow
13
  tags:
14
+ - retinal-disease-detection
15
+ - medical-imaging
16
+ - fundus-images
17
+ - mobilenetv2
18
  - classification
19
+ - grad-cam
20
+ - retina
21
+ model_name: RetinaVision-MNet
22
  ---
23
+ # 🧠 RetinaVision-MNet
 
 
24
 
25
+ **RetinaVision-MNet** is a custom-trained MobileNetV2-based deep learning model for multi-class retinal disease detection.
26
+ It predicts **10 retinal conditions from fundus images** and includes **Grad-CAM heatmaps** to provide interpretable visual explanations for every prediction.
27
 
28
+ The model is trained entirely from scratch and is hosted on Hugging Face due to GitHub’s file-size limitations.
29
 
30
+ ---
31
+
32
+ ## 🔥 Key Features
33
 
34
+ - **10-class retinal disease classification**
35
+ - **MobileNetV2 backbone** — lightweight and efficient for medical imaging
36
+ - **Grad-CAM interpretability** for understanding model decisions
37
+ - **Custom-trained model (.h5)** using Keras / TensorFlow
38
+ - **Optimized for FastAPI deployment** with async inference
39
+ - Works seamlessly with secure JWT-protected backend
40
+
41
+ ---
42
 
43
+ ## 📦 Usage
44
 
45
+ Download the model file from the **Files and Versions** tab and place it in your project:
46
 
47
+ ```python
48
+ from tensorflow.keras.models import load_model
49
 
50
+ model = load_model("mobile_model.h5")