|
|
import torch |
|
|
import soundfile as sf |
|
|
from pathlib import Path |
|
|
import unicodedata |
|
|
from transformers import ( |
|
|
SpeechT5ForTextToSpeech, |
|
|
SpeechT5Processor, |
|
|
SpeechT5HifiGan, |
|
|
PreTrainedTokenizerFast, |
|
|
) |
|
|
|
|
|
MODEL_ID = "ahnhs2k/speecht5-korean" |
|
|
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
|
|
|
def decompose_jamo(text): |
|
|
result = [] |
|
|
for ch in text: |
|
|
name = unicodedata.name(ch, "") |
|
|
if "HANGUL SYLLABLE" in name: |
|
|
code = ord(ch) - 0xAC00 |
|
|
result.append(chr(0x1100 + (code // 588))) |
|
|
result.append(chr(0x1161 + ((code % 588) // 28))) |
|
|
jong = code % 28 |
|
|
if jong > 0: |
|
|
result.append(chr(0x11A7 + jong)) |
|
|
else: |
|
|
result.append(ch) |
|
|
return result |
|
|
|
|
|
|
|
|
def main(): |
|
|
model = SpeechT5ForTextToSpeech.from_pretrained(MODEL_ID).to(DEVICE).eval() |
|
|
|
|
|
|
|
|
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") |
|
|
|
|
|
|
|
|
tokenizer = PreTrainedTokenizerFast.from_pretrained(MODEL_ID) |
|
|
processor.tokenizer = tokenizer |
|
|
|
|
|
vocoder = SpeechT5HifiGan.from_pretrained(Path(__file__).resolve().parent / "vocoder").to(DEVICE).eval() |
|
|
|
|
|
|
|
|
spk_path = Path(__file__).resolve().parent / "speaker_embedding.pth" |
|
|
spk_emb = torch.load(spk_path).to(DEVICE) |
|
|
|
|
|
text = "์๋
ํ์ธ์. ์๋ชจ ํ ํฌ๋์ด์ ๊ธฐ๋ฐ ํ๊ตญ์ด TTS ๋ฐ๋ชจ์
๋๋ค." |
|
|
jamo_seq = decompose_jamo(text) |
|
|
|
|
|
enc = tokenizer(jamo_seq, is_split_into_words=True, add_special_tokens=True, return_tensors="pt") |
|
|
enc = {k: v.to(DEVICE) for k, v in enc.items()} |
|
|
|
|
|
with torch.no_grad(): |
|
|
gen = model.generate_speech(enc["input_ids"], speaker_embeddings=spk_emb.unsqueeze(0), vocoder=vocoder) |
|
|
|
|
|
sf.write("demo_inference_output.wav", gen.cpu().numpy(), 16000) |
|
|
print("Saved demo_inference_output.wav") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|