speecht5-korean / demo_inference.py
ahnhs2k's picture
Upload SpeechT5 Korean TTS artifacts
49fa254 verified
import torch
import soundfile as sf
from pathlib import Path
import unicodedata
from transformers import (
SpeechT5ForTextToSpeech,
SpeechT5Processor,
SpeechT5HifiGan,
PreTrainedTokenizerFast,
)
MODEL_ID = "ahnhs2k/speecht5-korean"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def decompose_jamo(text):
result = []
for ch in text:
name = unicodedata.name(ch, "")
if "HANGUL SYLLABLE" in name:
code = ord(ch) - 0xAC00
result.append(chr(0x1100 + (code // 588)))
result.append(chr(0x1161 + ((code % 588) // 28)))
jong = code % 28
if jong > 0:
result.append(chr(0x11A7 + jong))
else:
result.append(ch)
return result
def main():
model = SpeechT5ForTextToSpeech.from_pretrained(MODEL_ID).to(DEVICE).eval()
# Processor๋Š” ํ•ญ์ƒ ์›๋ณธ์—์„œ ๋กœ๋“œ
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
# Custom tokenizer ๋กœ๋“œ ํ›„ processor์— ๋ฎ์–ด์“ฐ๊ธฐ
tokenizer = PreTrainedTokenizerFast.from_pretrained(MODEL_ID)
processor.tokenizer = tokenizer
vocoder = SpeechT5HifiGan.from_pretrained(Path(__file__).resolve().parent / "vocoder").to(DEVICE).eval()
# speaker embedding
spk_path = Path(__file__).resolve().parent / "speaker_embedding.pth"
spk_emb = torch.load(spk_path).to(DEVICE)
text = "์•ˆ๋…•ํ•˜์„ธ์š”. ์ž๋ชจ ํ† ํฌ๋‚˜์ด์ € ๊ธฐ๋ฐ˜ ํ•œ๊ตญ์–ด TTS ๋ฐ๋ชจ์ž…๋‹ˆ๋‹ค."
jamo_seq = decompose_jamo(text)
enc = tokenizer(jamo_seq, is_split_into_words=True, add_special_tokens=True, return_tensors="pt")
enc = {k: v.to(DEVICE) for k, v in enc.items()}
with torch.no_grad():
gen = model.generate_speech(enc["input_ids"], speaker_embeddings=spk_emb.unsqueeze(0), vocoder=vocoder)
sf.write("demo_inference_output.wav", gen.cpu().numpy(), 16000)
print("Saved demo_inference_output.wav")
if __name__ == "__main__":
main()