| from pathlib import Path | |
| from typing import Dict, List, Tuple | |
| import datasets | |
| import pandas as pd | |
| from seacrowd.utils.configs import SEACrowdConfig | |
| from seacrowd.utils.constants import Tasks, Licenses, TASK_TO_SCHEMA, SCHEMA_TO_FEATURES | |
| _CITATION = """\ | |
| @inproceedings{kargaran2023glotlid, | |
| title = {{GlotLID: Language Identification for Low-Resource Languages}}, | |
| author = {Kargaran, Amir Hossein and Imani, Ayyoob and Yvon, Fran{\c{c}}ois and Sch{\"u}tze, Hinrich}, | |
| year = 2023, | |
| booktitle = {The 2023 Conference on Empirical Methods in Natural Language Processing}, | |
| url = {https://openreview.net/forum?id=dl4e3EBz5j} | |
| } | |
| """ | |
| _DATASETNAME = "glotstorybook" | |
| _DESCRIPTION = """\ | |
| The GlotStoryBook dataset is a compilation of children's storybooks from the Global | |
| Storybooks project, encompassing 174 languages organized for machine translation tasks. It | |
| features rows containing the text segment (text number), the language code, and the file | |
| name, which corresponds to the specific book and story segment. This structure allows for | |
| the comparison of texts across different languages by matching file names and text numbers | |
| between rows. | |
| """ | |
| _HOMEPAGE = "https://huggingface.co/datasets/cis-lmu/GlotStoryBook" | |
| _LICENSE = f"""{Licenses.OTHERS.value} | \ | |
| We do not own any of the text from which these data has been extracted. All the files are | |
| collected from the repository located at https://github.com/global-asp/. The source | |
| repository for each text and file is stored in the dataset. Each file in the dataset is | |
| associated with one license from the CC family. The licenses include 'CC BY', 'CC BY-NC', | |
| 'CC BY-NC-SA', 'CC-BY', 'CC-BY-NC', and 'Public Domain'. We also license the code, actual | |
| packaging and the metadata of these data under the cc0-1.0. | |
| """ | |
| _LOCAL=False | |
| _LANGUAGES = ["khg", "khm", "mya", "tet", "tha", "vie"] | |
| _URLS = "https://huggingface.co/datasets/cis-lmu/GlotStoryBook/resolve/main/GlotStoryBook.csv" | |
| _SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING] | |
| _SOURCE_VERSION = "1.0.0" | |
| _SEACROWD_VERSION = "2024.06.20" | |
| class GlotStoryBookDataset(datasets.GeneratorBasedBuilder): | |
| """Compilation of storybooks from the Global Storybooks project""" | |
| SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | |
| SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | |
| SEACROWD_SCHEMA_NAME = TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower() | |
| BUILDER_CONFIGS = [ | |
| SEACrowdConfig( | |
| name=f"{_DATASETNAME}_source", | |
| version=SOURCE_VERSION, | |
| description=f"{_DATASETNAME} source schema", | |
| schema="source", | |
| subset_id=f"{_DATASETNAME}", | |
| ), | |
| SEACrowdConfig( | |
| name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", | |
| version=SEACROWD_VERSION, | |
| description=f"{_DATASETNAME} SEACrowd schema", | |
| schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", | |
| subset_id=f"{_DATASETNAME}", | |
| ), | |
| ] | |
| DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | |
| def _info(self) -> datasets.DatasetInfo: | |
| if self.config.schema == "source": | |
| features = datasets.Features( | |
| { | |
| "text": datasets.Value("string"), | |
| "text_number": datasets.Value("int64"), | |
| "license": datasets.Value("string"), | |
| "text_by": datasets.Value("string"), | |
| "translation_by": datasets.Value("string"), | |
| "language": datasets.Value("string"), | |
| "file_name": datasets.Value("string"), | |
| "source": datasets.Value("string"), | |
| "iso639-3": datasets.Value("string"), | |
| "script": datasets.Value("string"), | |
| } | |
| ) | |
| elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": | |
| features = SCHEMA_TO_FEATURES[self.SEACROWD_SCHEMA_NAME.upper()] | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | |
| data_path = Path(dl_manager.download_and_extract(_URLS)) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": data_path, | |
| "split": "train", | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: | |
| """Yields examples as (key, example) tuples.""" | |
| df = pd.read_csv(filepath) | |
| df = df[df["ISO639-3"].isin(_LANGUAGES)] | |
| if self.config.schema == "source": | |
| for i, row in df.iterrows(): | |
| yield i, { | |
| "text": row["Text"], | |
| "text_number": row["Text Number"], | |
| "license": row["License"], | |
| "text_by": row["Text By"], | |
| "translation_by": row["Translation By"], | |
| "language": row["Language"], | |
| "file_name": row["File Name"], | |
| "source": row["Source"], | |
| "iso639-3": row["ISO639-3"], | |
| "script": row["Script"], | |
| } | |
| elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": | |
| df = df.sort_values(by=["ISO639-3", "Source", "File Name", "Text Number"]) | |
| df = df.groupby(["ISO639-3", "Source", "File Name"]).agg({"Text": " ".join}).reset_index() | |
| for i, row in df.iterrows(): | |
| yield i, { | |
| "id": str(i), | |
| "text": row["Text"], | |
| } |