Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -210,7 +210,114 @@ The inclusion of a dataset in the collection was determined by the following cri
|
|
| 210 |
To evaluate your model according to the methodology used in our paper, you can use the following code.
|
| 211 |
|
| 212 |
```python
|
| 213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
```
|
| 215 |
|
| 216 |
## Additional Information
|
|
|
|
| 210 |
To evaluate your model according to the methodology used in our paper, you can use the following code.
|
| 211 |
|
| 212 |
```python
|
| 213 |
+
import os
|
| 214 |
+
import string
|
| 215 |
+
|
| 216 |
+
from Levenshtein import ratio
|
| 217 |
+
from datasets import load_dataset, Dataset, concatenate_datasets
|
| 218 |
+
from sklearn.metrics import classification_report, f1_score, accuracy_score
|
| 219 |
+
|
| 220 |
+
# 🔧 Change this path to where your JSONL prediction files are stored
|
| 221 |
+
outputs_path = "./"
|
| 222 |
+
|
| 223 |
+
_DATASETS = [
|
| 224 |
+
"cafe", "crema_d", "emns", "emozionalmente", "enterface",
|
| 225 |
+
"jl_Corpus", "mesd", "nemo", "oreau", "pavoque",
|
| 226 |
+
"ravdess", "resd", "subesco",
|
| 227 |
+
]
|
| 228 |
+
|
| 229 |
+
THRESHOLD = 0.57
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def get_expected(split: str) -> tuple[set, str, dict]:
|
| 233 |
+
"""Load expected emotion labels and language metadata from CAMEO dataset."""
|
| 234 |
+
ds = load_dataset("amu-cai/CAMEO", split=split)
|
| 235 |
+
return set(ds["emotion"]), ds["language"][0], dict(zip(ds["file_id"], ds["emotion"]))
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def process_outputs(dataset_name: str) -> tuple[Dataset, set, str]:
|
| 239 |
+
"""Clean and correct predictions, returning a Dataset with fixed predictions."""
|
| 240 |
+
outputs = Dataset.from_json(os.path.join(outputs_path, f"{dataset_name}.jsonl"))
|
| 241 |
+
options, language, expected = get_expected(dataset_name)
|
| 242 |
+
|
| 243 |
+
def preprocess(x):
|
| 244 |
+
return {
|
| 245 |
+
"predicted": x["predicted"].translate(str.maketrans('', '', string.punctuation)).lower().strip(),
|
| 246 |
+
"expected": expected.get(x["file_id"]),
|
| 247 |
+
}
|
| 248 |
+
|
| 249 |
+
outputs = outputs.map(preprocess)
|
| 250 |
+
|
| 251 |
+
def fix_prediction(x):
|
| 252 |
+
if x["predicted"] in options:
|
| 253 |
+
x["fixed_prediction"] = x["predicted"]
|
| 254 |
+
else:
|
| 255 |
+
predicted_words = x["predicted"].split()
|
| 256 |
+
label_scores = {
|
| 257 |
+
label: sum(r for r in (ratio(label, word) for word in predicted_words) if r > THRESHOLD)
|
| 258 |
+
for label in options
|
| 259 |
+
}
|
| 260 |
+
x["fixed_prediction"] = max(label_scores, key=label_scores.get)
|
| 261 |
+
return x
|
| 262 |
+
|
| 263 |
+
outputs = outputs.map(fix_prediction)
|
| 264 |
+
return outputs, options, language
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
def calculate_metrics(outputs: Dataset, labels: set) -> dict:
|
| 268 |
+
"""Compute classification metrics."""
|
| 269 |
+
y_true = outputs["expected"]
|
| 270 |
+
y_pred = outputs["fixed_prediction"]
|
| 271 |
+
|
| 272 |
+
return {
|
| 273 |
+
"f1_macro": f1_score(y_true, y_pred, average="macro"),
|
| 274 |
+
"weighted_f1": f1_score(y_true, y_pred, average="weighted"),
|
| 275 |
+
"accuracy": accuracy_score(y_true, y_pred),
|
| 276 |
+
"metrics_per_label": classification_report(
|
| 277 |
+
y_true, y_pred, target_names=sorted(labels), output_dict=True
|
| 278 |
+
),
|
| 279 |
+
}
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
# 🧮 Main Evaluation Loop
|
| 283 |
+
results = []
|
| 284 |
+
outputs_per_language = {}
|
| 285 |
+
full_outputs, full_labels = None, set()
|
| 286 |
+
|
| 287 |
+
for dataset in _DATASETS:
|
| 288 |
+
jsonl_path = os.path.join(outputs_path, f"{dataset}.jsonl")
|
| 289 |
+
|
| 290 |
+
if not os.path.isfile(jsonl_path):
|
| 291 |
+
print(f"Jsonl file for {dataset} not found.")
|
| 292 |
+
continue
|
| 293 |
+
|
| 294 |
+
outputs, labels, language = process_outputs(dataset)
|
| 295 |
+
metrics = calculate_metrics(outputs, labels)
|
| 296 |
+
results.append({"language": language, "dataset": dataset, **metrics})
|
| 297 |
+
|
| 298 |
+
if language not in outputs_per_language:
|
| 299 |
+
outputs_per_language[language] = {"labels": labels, "outputs": outputs}
|
| 300 |
+
else:
|
| 301 |
+
outputs_per_language[language]["labels"] |= labels
|
| 302 |
+
outputs_per_language[language]["outputs"] = concatenate_datasets([
|
| 303 |
+
outputs_per_language[language]["outputs"], outputs
|
| 304 |
+
])
|
| 305 |
+
|
| 306 |
+
full_outputs = outputs if full_outputs is None else concatenate_datasets([full_outputs, outputs])
|
| 307 |
+
full_labels |= labels
|
| 308 |
+
|
| 309 |
+
# 🔤 Per-language evaluation
|
| 310 |
+
for language, data in outputs_per_language.items():
|
| 311 |
+
metrics = calculate_metrics(data["outputs"], data["labels"])
|
| 312 |
+
results.append({"language": language, "dataset": "all", **metrics})
|
| 313 |
+
|
| 314 |
+
# 🌍 Global evaluation
|
| 315 |
+
if full_outputs is not None:
|
| 316 |
+
metrics = calculate_metrics(full_outputs, full_labels)
|
| 317 |
+
results.append({"language": "all", "dataset": "all", **metrics})
|
| 318 |
+
|
| 319 |
+
# 💾 Save results
|
| 320 |
+
Dataset.from_list(results).to_json(os.path.join(outputs_path, "results.jsonl"))
|
| 321 |
```
|
| 322 |
|
| 323 |
## Additional Information
|