andropar commited on
Commit
18500d1
·
verified ·
1 Parent(s): 9100613

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +122 -31
README.md CHANGED
@@ -4,6 +4,7 @@ task_categories:
4
  - feature-extraction
5
  - image-classification
6
  - zero-shot-classification
 
7
  language:
8
  - en
9
  tags:
@@ -12,85 +13,171 @@ tags:
12
  - laion
13
  - image-embeddings
14
  - natural-images
 
15
  size_categories:
16
  - 100M<n<1B
17
  ---
18
 
19
  # ReLAION-2B Natural Embeddings
20
 
21
- CLIP ViT-H/14 embeddings for ~500M natural/photographic images from the ReLAION-2B dataset.
22
 
23
- ## Overview
 
 
 
 
24
 
25
- This dataset contains pre-computed CLIP embeddings for images classified as "natural" (score > 0.7) from the [relaion2b-natural](https://huggingface.co/datasets/andropar/relaion2b-natural) dataset.
 
 
 
 
 
 
 
 
 
 
26
 
27
  | | |
28
  |---|---|
29
- | **Rows** | ~514 million |
30
  | **Embedding model** | [CLIP ViT-H/14](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K) |
31
  | **Embedding dimensions** | 768 |
32
- | **Source** | [ReLAION-2B-en-research-safe](https://huggingface.co/datasets/laion/relaion2B-en-research-safe) |
33
- | **Natural score threshold** | > 0.7 |
34
  | **Format** | Parquet (Snappy compressed) |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  ## Dataset Structure
37
 
38
  | Column | Type | Description |
39
  |--------|------|-------------|
40
  | `url` | string | Image URL from ReLAION-2B |
41
- | `natural_score` | float32 | Naturalness prediction (0.7-1.0 range) |
42
  | `feature_row_id` | int64 | Row index in original LAION-2B embeddings |
43
- | `embedding` | float32[768] | CLIP ViT-H/14 embedding |
44
 
45
- ## Usage
46
 
47
- **Load with PyArrow:**
 
 
48
  ```python
49
  import pyarrow.parquet as pq
 
50
 
51
  # Load a single file
52
- table = pq.read_table("relaion2b_features_00000.parquet")
53
 
54
- # Access embeddings
55
- import numpy as np
56
  embeddings = np.array([e.as_py() for e in table['embedding']])
57
  urls = table['url'].to_pylist()
 
 
 
58
  ```
59
 
60
- **Load with Hugging Face Datasets:**
61
  ```python
62
- from datasets import load_dataset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
- dataset = load_dataset("andropar/relaion2b-natural-embeddings")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  ```
66
 
67
- **Streaming (recommended for large-scale use):**
68
  ```python
69
  from datasets import load_dataset
70
 
71
- dataset = load_dataset("andropar/relaion2b-natural-embeddings", streaming=True)
72
- for example in dataset['train']:
73
- embedding = example['embedding']
74
- url = example['url']
75
- # process...
 
 
 
 
 
 
 
 
76
  ```
77
 
78
  ## Use Cases
79
 
80
- - Image similarity search and retrieval
81
- - Zero-shot image classification
82
- - Training image-text models
83
- - Clustering and analysis of natural images
84
- - Building image search indices
85
 
86
  ## Related Datasets
87
 
88
- - [andropar/relaion2b-natural](https://huggingface.co/datasets/andropar/relaion2b-natural) - Natural scores for all 2.1B ReLAION-2B images
89
 
90
  ## Attribution
91
 
92
  - **Source dataset:** [ReLAION-2B-en-research-safe](https://huggingface.co/datasets/laion/relaion2B-en-research-safe) by LAION
93
- - **Embedding model:** [CLIP ViT-H/14](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K) by LAION
 
 
 
 
 
 
 
 
 
94
 
95
  ## Citation
96
 
@@ -107,7 +194,11 @@ for example in dataset['train']:
107
 
108
  ## Limitations
109
 
110
- - Embeddings are from CLIP ViT-H/14, which was trained on web data and may have biases
111
  - "Naturalness" is based on a learned classifier - see [relaion2b-natural](https://huggingface.co/datasets/andropar/relaion2b-natural) for methodology
112
- - Some URLs may be broken or point to different/removed images
113
  - Intended for research use
 
 
 
 
 
4
  - feature-extraction
5
  - image-classification
6
  - zero-shot-classification
7
+ - image-to-image
8
  language:
9
  - en
10
  tags:
 
13
  - laion
14
  - image-embeddings
15
  - natural-images
16
+ - image-retrieval
17
  size_categories:
18
  - 100M<n<1B
19
  ---
20
 
21
  # ReLAION-2B Natural Embeddings
22
 
23
+ Pre-computed **CLIP ViT-H/14 embeddings** for ~500 million natural photographs from ReLAION-2B.
24
 
25
+ ## Quick Start
26
+
27
+ ```python
28
+ from datasets import load_dataset
29
+ import numpy as np
30
 
31
+ # Load with streaming (recommended for this size)
32
+ ds = load_dataset("andropar/relaion2b-natural-embeddings", streaming=True)
33
+
34
+ for row in ds['train']:
35
+ url = row['url']
36
+ embedding = np.array(row['embedding']) # 768-dim CLIP embedding
37
+ score = row['natural_score'] # 0.7 - 1.0
38
+ break
39
+ ```
40
+
41
+ ## Overview
42
 
43
  | | |
44
  |---|---|
45
+ | **Total embeddings** | ~514 million |
46
  | **Embedding model** | [CLIP ViT-H/14](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K) |
47
  | **Embedding dimensions** | 768 |
48
+ | **Natural score range** | 0.7 - 1.0 (filtered for natural photographs) |
 
49
  | **Format** | Parquet (Snappy compressed) |
50
+ | **Total size** | ~711 GB |
51
+
52
+ ## Example Images
53
+
54
+ All images in this dataset have natural scores > 0.7. Examples from different score ranges:
55
+
56
+ **Natural score 0.7 - 0.8:**
57
+ ![Examples with scores 0.7-0.8](examples/natural_0.7-0.8.png)
58
+
59
+ **Natural score 0.8 - 0.9:**
60
+ ![Examples with scores 0.8-0.9](examples/natural_0.8-0.9.png)
61
+
62
+ **Natural score 0.9 - 1.0:**
63
+ ![Examples with scores 0.9-1.0](examples/natural_0.9-1.0.png)
64
+
65
+ *Thumbnails shown solely to illustrate dataset characteristics. Source: ReLAION-2B-en-research-safe (Apache 2.0). Underlying images remain under the copyright of their original creators.*
66
 
67
  ## Dataset Structure
68
 
69
  | Column | Type | Description |
70
  |--------|------|-------------|
71
  | `url` | string | Image URL from ReLAION-2B |
72
+ | `natural_score` | float32 | Naturalness prediction (0.7 - 1.0) |
73
  | `feature_row_id` | int64 | Row index in original LAION-2B embeddings |
74
+ | `embedding` | float32[768] | CLIP ViT-H/14 image embedding |
75
 
76
+ Files are named `relaion2b_features_*.parquet` (2,298 files total).
77
 
78
+ ## Usage Examples
79
+
80
+ **Load embeddings with PyArrow:**
81
  ```python
82
  import pyarrow.parquet as pq
83
+ import numpy as np
84
 
85
  # Load a single file
86
+ table = pq.read_table("data/relaion2b_features_00000.parquet")
87
 
88
+ # Convert to numpy
 
89
  embeddings = np.array([e.as_py() for e in table['embedding']])
90
  urls = table['url'].to_pylist()
91
+ scores = table['natural_score'].to_pylist()
92
+
93
+ print(f"Loaded {len(embeddings)} embeddings, shape: {embeddings.shape}")
94
  ```
95
 
96
+ **Image similarity search:**
97
  ```python
98
+ import numpy as np
99
+ from sklearn.metrics.pairwise import cosine_similarity
100
+
101
+ # Assuming you have a query embedding from CLIP
102
+ query_embedding = ... # Your 768-dim CLIP embedding
103
+
104
+ # Find most similar images
105
+ similarities = cosine_similarity([query_embedding], embeddings)[0]
106
+ top_k = np.argsort(similarities)[-10:][::-1]
107
+
108
+ for idx in top_k:
109
+ print(f"Score: {similarities[idx]:.3f}, URL: {urls[idx]}")
110
+ ```
111
+
112
+ **Build a FAISS index for fast search:**
113
+ ```python
114
+ import faiss
115
+ import numpy as np
116
 
117
+ # Load embeddings from multiple files
118
+ all_embeddings = []
119
+ for i in range(10): # First 10 files
120
+ table = pq.read_table(f"data/relaion2b_features_{i:05d}.parquet")
121
+ embs = np.array([e.as_py() for e in table['embedding']], dtype=np.float32)
122
+ all_embeddings.append(embs)
123
+
124
+ embeddings = np.vstack(all_embeddings)
125
+
126
+ # Build index
127
+ index = faiss.IndexFlatIP(768) # Inner product (for normalized vectors)
128
+ faiss.normalize_L2(embeddings)
129
+ index.add(embeddings)
130
+
131
+ # Search
132
+ query = np.random.randn(1, 768).astype(np.float32)
133
+ faiss.normalize_L2(query)
134
+ distances, indices = index.search(query, k=10)
135
  ```
136
 
137
+ **Stream with HuggingFace datasets:**
138
  ```python
139
  from datasets import load_dataset
140
 
141
+ ds = load_dataset("andropar/relaion2b-natural-embeddings", streaming=True)
142
+
143
+ # Process in batches
144
+ batch = []
145
+ for i, row in enumerate(ds['train']):
146
+ batch.append(row['embedding'])
147
+ if len(batch) >= 1000:
148
+ # Process batch
149
+ embeddings = np.array(batch)
150
+ # ... your processing ...
151
+ batch = []
152
+ if i >= 10000:
153
+ break
154
  ```
155
 
156
  ## Use Cases
157
 
158
+ - **Image similarity search:** Find visually similar images in a large corpus
159
+ - **Zero-shot classification:** Use CLIP embeddings for classification without training
160
+ - **Clustering:** Discover visual themes and patterns in natural photographs
161
+ - **Training data:** Use as features for downstream models
162
+ - **Research:** Study visual representations at scale
163
 
164
  ## Related Datasets
165
 
166
+ - **[andropar/relaion2b-natural](https://huggingface.co/datasets/andropar/relaion2b-natural)** - Natural scores for all 2.1B ReLAION-2B images (use this to get URLs for images with any score threshold)
167
 
168
  ## Attribution
169
 
170
  - **Source dataset:** [ReLAION-2B-en-research-safe](https://huggingface.co/datasets/laion/relaion2B-en-research-safe) by LAION
171
+ - **Embedding model:** [CLIP ViT-H/14](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K) trained on LAION-2B
172
+
173
+ ## Licensing / Content
174
+
175
+ This repository contains only **metadata and derived features** (URLs, natural scores, embeddings). No images are distributed.
176
+
177
+ - The underlying images are hosted by third-party websites and remain under their original copyrights and terms of use.
178
+ - Our additions (embeddings, documentation) are released under **CC-BY 4.0**.
179
+ - This dataset is based on [ReLAION-2B-en-research-safe](https://huggingface.co/datasets/laion/relaion2B-en-research-safe), which is licensed under **Apache 2.0**.
180
+ - Please check license compatibility for any commercial usage.
181
 
182
  ## Citation
183
 
 
194
 
195
  ## Limitations
196
 
197
+ - Embeddings are from CLIP ViT-H/14, which was trained on web data and may reflect its biases
198
  - "Naturalness" is based on a learned classifier - see [relaion2b-natural](https://huggingface.co/datasets/andropar/relaion2b-natural) for methodology
199
+ - Some URLs may be broken or point to different/removed images over time
200
  - Intended for research use
201
+
202
+ ---
203
+
204
+ Questions or issues? Open a discussion!