|
|
|
|
|
""" |
|
|
Debug script to analyze model output issues and test structured generation. |
|
|
""" |
|
|
|
|
|
import json |
|
|
import requests |
|
|
import argparse |
|
|
from typing import List, Dict, Any, Optional |
|
|
|
|
|
|
|
|
def call_model(message: str, model_url: str = "http://0.0.0.0:12333/v1/chat/completions", |
|
|
model_name: str = "eval-agent", system: str = "", temperature: float = 0.1, |
|
|
max_tokens: int = 512) -> Optional[str]: |
|
|
"""Call the model with specific parameters for debugging.""" |
|
|
|
|
|
messages = [] |
|
|
if system: |
|
|
messages.append({"role": "system", "content": system}) |
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
payload = { |
|
|
"model": model_name, |
|
|
"messages": messages, |
|
|
"max_tokens": max_tokens, |
|
|
"temperature": temperature, |
|
|
"stream": False |
|
|
} |
|
|
|
|
|
try: |
|
|
response = requests.post(model_url, json=payload, timeout=60) |
|
|
response.raise_for_status() |
|
|
result = response.json() |
|
|
return result["choices"][0]["message"]["content"] |
|
|
except Exception as e: |
|
|
print(f"Error: {e}") |
|
|
return None |
|
|
|
|
|
|
|
|
def test_structured_output(): |
|
|
"""Test various prompts to debug structured output issues.""" |
|
|
|
|
|
print("🔍 DEBUGGING MODEL STRUCTURED OUTPUT") |
|
|
print("="*60) |
|
|
|
|
|
|
|
|
test_cases = [ |
|
|
{ |
|
|
"name": "Simple Structure Test", |
|
|
"prompt": "Please respond with: <think>test thought</think> <subaspect>test aspect</subaspect> <tool>test tool</tool>", |
|
|
"system": "", |
|
|
"temperature": 0.0 |
|
|
}, |
|
|
{ |
|
|
"name": "VBench Format Test", |
|
|
"prompt": "How well does the model generate objects?", |
|
|
"system": "You must respond in this exact format: <think>your reasoning</think> <subaspect>specific aspect</subaspect> <tool>evaluation tool</tool>", |
|
|
"temperature": 0.1 |
|
|
}, |
|
|
{ |
|
|
"name": "Training Data Example", |
|
|
"prompt": "How accurately does the model generate specific object classes as described in the text prompt?", |
|
|
"system": """You are an expert in evaluating video generation models. You must respond in this exact format: |
|
|
|
|
|
<think>Your detailed reasoning about what to evaluate</think> <subaspect>The specific aspect to focus on</subaspect> <tool>Object Class</tool> |
|
|
|
|
|
Available tools: Object Class, Scene, Color, Spatial Relationship, Human Action, Dynamic Degree, Multiple Objects, Overall Consistency, Aesthetic Quality, Imaging Quality, Motion Smoothness, Subject Consistency, Background Consistency""", |
|
|
"temperature": 0.0 |
|
|
} |
|
|
] |
|
|
|
|
|
for i, test in enumerate(test_cases, 1): |
|
|
print(f"\n{i}. {test['name']}") |
|
|
print("-" * 40) |
|
|
print(f"Prompt: {test['prompt'][:100]}...") |
|
|
print(f"Temperature: {test['temperature']}") |
|
|
|
|
|
response = call_model( |
|
|
message=test['prompt'], |
|
|
system=test['system'], |
|
|
temperature=test['temperature'] |
|
|
) |
|
|
|
|
|
if response: |
|
|
print(f"Response: {response}") |
|
|
|
|
|
|
|
|
has_think = "<think>" in response and "</think>" in response |
|
|
has_subaspect = "<subaspect>" in response and "</subaspect>" in response |
|
|
has_tool = "<tool>" in response and "</tool>" in response |
|
|
|
|
|
print(f"Structure Analysis:") |
|
|
print(f" ✅ Has <think> tags: {has_think}") |
|
|
print(f" ✅ Has <subaspect> tags: {has_subaspect}") |
|
|
print(f" ✅ Has <tool> tags: {has_tool}") |
|
|
print(f" ✅ All tags present: {has_think and has_subaspect and has_tool}") |
|
|
|
|
|
|
|
|
errors = [] |
|
|
if "<think>" in response and "</tool>" in response and "</think>" not in response: |
|
|
errors.append("Missing </think> closing tag") |
|
|
if "Object Class</tool>" in response: |
|
|
errors.append("Tool name in wrong tag") |
|
|
if len([tag for tag in ["<think>", "<subaspect>", "<tool>"] if tag in response]) != len([tag for tag in ["</think>", "</subaspect>", "</tool>"] if tag in response]): |
|
|
errors.append("Mismatched opening/closing tags") |
|
|
|
|
|
if errors: |
|
|
print(f" ❌ Errors found: {', '.join(errors)}") |
|
|
else: |
|
|
print("❌ No response received") |
|
|
|
|
|
|
|
|
def test_temperature_effects(): |
|
|
"""Test how temperature affects structured output quality.""" |
|
|
|
|
|
print("\n\n🌡️ TEMPERATURE EFFECTS ON STRUCTURED OUTPUT") |
|
|
print("="*60) |
|
|
|
|
|
prompt = "How accurately does the model generate specific object classes?" |
|
|
system = "Respond in format: <think>reasoning</think> <subaspect>aspect</subaspect> <tool>Object Class</tool>" |
|
|
|
|
|
temperatures = [0.0, 0.1, 0.3, 0.7, 1.0] |
|
|
|
|
|
for temp in temperatures: |
|
|
print(f"\nTemperature: {temp}") |
|
|
print("-" * 30) |
|
|
|
|
|
response = call_model( |
|
|
message=prompt, |
|
|
system=system, |
|
|
temperature=temp, |
|
|
max_tokens=200 |
|
|
) |
|
|
|
|
|
if response: |
|
|
print(f"Response: {response[:150]}...") |
|
|
|
|
|
|
|
|
correct_structure = ( |
|
|
"<think>" in response and "</think>" in response and |
|
|
"<subaspect>" in response and "</subaspect>" in response and |
|
|
"<tool>" in response and "</tool>" in response |
|
|
) |
|
|
print(f"Correct structure: {'✅' if correct_structure else '❌'}") |
|
|
else: |
|
|
print("❌ No response") |
|
|
|
|
|
|
|
|
def analyze_training_sample(): |
|
|
"""Analyze a training sample to understand expected format.""" |
|
|
|
|
|
print("\n\n📚 TRAINING DATA ANALYSIS") |
|
|
print("="*60) |
|
|
|
|
|
|
|
|
try: |
|
|
with open("data/postprocess_20250819/ea_cot_dataset_10k.json", 'r') as f: |
|
|
data = json.load(f) |
|
|
|
|
|
sample = data[0] |
|
|
|
|
|
print("Training Sample:") |
|
|
print(f"Instruction: {sample['instruction']}") |
|
|
print(f"Expected Output: {sample['output']}") |
|
|
|
|
|
|
|
|
print("\n🧪 Testing with exact training example:") |
|
|
response = call_model( |
|
|
message=sample['instruction'], |
|
|
system=sample.get('system', ''), |
|
|
temperature=0.0 |
|
|
) |
|
|
|
|
|
print(f"Model Response: {response}") |
|
|
|
|
|
|
|
|
expected = sample['output'] |
|
|
if response and expected in response: |
|
|
print("✅ Model output matches training data!") |
|
|
else: |
|
|
print("❌ Model output differs from training data") |
|
|
|
|
|
|
|
|
if response: |
|
|
print("\nDetailed Analysis:") |
|
|
print(f"Expected think: {expected[expected.find('<think>')+7:expected.find('</think>')][:50]}...") |
|
|
print(f"Expected subaspect: {expected[expected.find('<subaspect>')+11:expected.find('</subaspect>')]}") |
|
|
print(f"Expected tool: {expected[expected.find('<tool>')+6:expected.find('</tool>')]}") |
|
|
|
|
|
if '<think>' in response: |
|
|
think_content = response[response.find('<think>')+7:response.find('</think>')] if '</think>' in response else "INCOMPLETE" |
|
|
print(f"Actual think: {think_content[:50]}...") |
|
|
|
|
|
except Exception as e: |
|
|
print(f"Could not load training data: {e}") |
|
|
|
|
|
|
|
|
def main(): |
|
|
parser = argparse.ArgumentParser(description="Debug model structured output issues") |
|
|
parser.add_argument("--model_url", default="http://0.0.0.0:12333/v1/chat/completions") |
|
|
parser.add_argument("--model_name", default="eval-agent") |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
print("🔗 Testing connection...") |
|
|
response = call_model("Hello", model_url=args.model_url, model_name=args.model_name) |
|
|
if not response: |
|
|
print("❌ Cannot connect to model server") |
|
|
return |
|
|
|
|
|
print("✅ Connected successfully!") |
|
|
|
|
|
|
|
|
test_structured_output() |
|
|
test_temperature_effects() |
|
|
analyze_training_sample() |
|
|
|
|
|
print("\n\n💡 RECOMMENDATIONS:") |
|
|
print("="*60) |
|
|
print("1. Use temperature=0.0 or very low temperature for structured output") |
|
|
print("2. Include explicit format instructions in system prompt") |
|
|
print("3. Consider retraining with more structured output examples") |
|
|
print("4. Add format validation in your evaluation pipeline") |
|
|
print("5. Use constrained generation or parsing to fix malformed output") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |