ariG23498 HF Staff commited on
Commit
97f670b
·
verified ·
1 Parent(s): 74ca077

Upload inclusionAI_Ring-mini-2.0_0.txt with huggingface_hub

Browse files
Files changed (1) hide show
  1. inclusionAI_Ring-mini-2.0_0.txt +2 -2
inclusionAI_Ring-mini-2.0_0.txt CHANGED
@@ -1,5 +1,5 @@
1
  Traceback (most recent call last):
2
- File "/tmp/inclusionAI_Ring-mini-2.0_0A8OYcy.py", line 13, in <module>
3
  pipe = pipeline("text-generation", model="inclusionAI/Ring-mini-2.0", trust_remote_code=True)
4
  File "/tmp/.cache/uv/environments-v2/c55f2438beac7672/lib/python3.13/site-packages/transformers/pipelines/__init__.py", line 1230, in pipeline
5
  return pipeline_class(model=model, framework=framework, task=task, **kwargs)
@@ -38,4 +38,4 @@ Traceback (most recent call last):
38
  ^^^^^^^^^^^^^
39
  )
40
  ^
41
- torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 12.00 MiB. GPU 0 has a total capacity of 22.30 GiB of which 4.69 MiB is free. Process 26201 has 22.29 GiB memory in use. Of the allocated memory 22.05 GiB is allocated by PyTorch, and 1.86 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
 
1
  Traceback (most recent call last):
2
+ File "/tmp/inclusionAI_Ring-mini-2.0_0cdUSa7.py", line 13, in <module>
3
  pipe = pipeline("text-generation", model="inclusionAI/Ring-mini-2.0", trust_remote_code=True)
4
  File "/tmp/.cache/uv/environments-v2/c55f2438beac7672/lib/python3.13/site-packages/transformers/pipelines/__init__.py", line 1230, in pipeline
5
  return pipeline_class(model=model, framework=framework, task=task, **kwargs)
 
38
  ^^^^^^^^^^^^^
39
  )
40
  ^
41
+ torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 12.00 MiB. GPU 0 has a total capacity of 22.30 GiB of which 4.69 MiB is free. Process 26411 has 22.29 GiB memory in use. Of the allocated memory 22.05 GiB is allocated by PyTorch, and 1.86 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)