Upload 3 files
Browse files- config.json +40 -0
- configuration_d2coder.py +149 -0
- modeling_d2coder.py +638 -0
config.json
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Mymodel"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"bos_token_id": 2,
|
| 7 |
+
"embedding_dim": 4096,
|
| 8 |
+
"embedding_method": "pma",
|
| 9 |
+
"encoder_mode": "post_normal",
|
| 10 |
+
"eos_token_id": 2,
|
| 11 |
+
"hidden_act": "silu",
|
| 12 |
+
"hidden_size": 4096,
|
| 13 |
+
"inf_seq_length": 1024,
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 13440,
|
| 16 |
+
"keep_max_layer": 32,
|
| 17 |
+
"max_position_embeddings": 65536,
|
| 18 |
+
"max_window_layers": 28,
|
| 19 |
+
"model_type": "qwen2",
|
| 20 |
+
"num_attention_heads": 32,
|
| 21 |
+
"num_encoder_layers": 0,
|
| 22 |
+
"num_hidden_layers": 32,
|
| 23 |
+
"num_key_value_heads": 4,
|
| 24 |
+
"padding_side": "right",
|
| 25 |
+
"pma_ln": true,
|
| 26 |
+
"pma_norm": false,
|
| 27 |
+
"pma_norm_mode": "post_normal",
|
| 28 |
+
"pma_num_heads": 32,
|
| 29 |
+
"rms_norm_eps": 1e-05,
|
| 30 |
+
"rope_theta": 1000000,
|
| 31 |
+
"rotary_emb_base": 1000000,
|
| 32 |
+
"seq_length": 65536,
|
| 33 |
+
"sliding_window": null,
|
| 34 |
+
"tie_word_embeddings": false,
|
| 35 |
+
"torch_dtype": "bfloat16",
|
| 36 |
+
"transformers_version": "4.39.2",
|
| 37 |
+
"use_cache": true,
|
| 38 |
+
"use_sliding_window": false,
|
| 39 |
+
"vocab_size": 92416
|
| 40 |
+
}
|
configuration_d2coder.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig
|
| 2 |
+
from transformers.utils import logging
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
logger = logging.get_logger(__name__)
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class D2CoderConfig(PretrainedConfig):
|
| 9 |
+
r"""
|
| 10 |
+
This is the configuration class to store the configuration of a [`D2LLM`]. It is used to instantiate a
|
| 11 |
+
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 12 |
+
with the defaults will yield a similar configuration to that of
|
| 13 |
+
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
|
| 14 |
+
|
| 15 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 16 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
| 21 |
+
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
|
| 22 |
+
`inputs_ids` passed when calling [`D2LLM`]
|
| 23 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 24 |
+
Dimension of the hidden representations.
|
| 25 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
| 26 |
+
Dimension of the MLP representations.
|
| 27 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 28 |
+
Number of hidden layers in the Transformer encoder.
|
| 29 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 30 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 31 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
| 32 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 33 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 34 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 35 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 36 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 37 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
| 38 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 39 |
+
The non-linear activation function (function or string) in the decoder.
|
| 40 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
| 41 |
+
The maximum sequence length that this model might ever be used with.
|
| 42 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 43 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 44 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 45 |
+
The epsilon used by the rms normalization layers.
|
| 46 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 47 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 48 |
+
relevant if `config.is_decoder=True`.
|
| 49 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 50 |
+
Whether the model's input and output word embeddings should be tied.
|
| 51 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 52 |
+
The base period of the RoPE embeddings.
|
| 53 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
| 54 |
+
Whether to use sliding window attention.
|
| 55 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
| 56 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
| 57 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
| 58 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
| 59 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 60 |
+
The dropout ratio for the attention probabilities.
|
| 61 |
+
|
| 62 |
+
```python
|
| 63 |
+
>>> from transformers import Qwen2Model, Qwen2Config
|
| 64 |
+
|
| 65 |
+
>>> # Initializing a Qwen2 style configuration
|
| 66 |
+
>>> configuration = Qwen2Config()
|
| 67 |
+
|
| 68 |
+
>>> # Initializing a model from the Qwen2-7B style configuration
|
| 69 |
+
>>> model = Qwen2Model(configuration)
|
| 70 |
+
|
| 71 |
+
>>> # Accessing the model configuration
|
| 72 |
+
>>> configuration = model.config
|
| 73 |
+
```"""
|
| 74 |
+
|
| 75 |
+
model_type = "qwen2"
|
| 76 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 77 |
+
|
| 78 |
+
def __init__(
|
| 79 |
+
self,
|
| 80 |
+
vocab_size=151936,
|
| 81 |
+
hidden_size=4096,
|
| 82 |
+
intermediate_size=22016,
|
| 83 |
+
num_hidden_layers=32,
|
| 84 |
+
num_attention_heads=32,
|
| 85 |
+
num_key_value_heads=32,
|
| 86 |
+
hidden_act="silu",
|
| 87 |
+
max_position_embeddings=32768,
|
| 88 |
+
initializer_range=0.02,
|
| 89 |
+
rms_norm_eps=1e-6,
|
| 90 |
+
use_cache=True,
|
| 91 |
+
tie_word_embeddings=False,
|
| 92 |
+
rope_theta=10000.0,
|
| 93 |
+
use_sliding_window=False,
|
| 94 |
+
sliding_window=4096,
|
| 95 |
+
max_window_layers=28,
|
| 96 |
+
attention_dropout=0.0,
|
| 97 |
+
|
| 98 |
+
embedding_method="pma",
|
| 99 |
+
inf_seq_length=1024,
|
| 100 |
+
encoder_mode ="post_normal",
|
| 101 |
+
num_encoder_layers =0,
|
| 102 |
+
padding_side ="right",
|
| 103 |
+
|
| 104 |
+
keep_max_layer=32,
|
| 105 |
+
pma_num_heads=32,
|
| 106 |
+
pma_ln=True,
|
| 107 |
+
pma_norm=False,
|
| 108 |
+
pma_norm_mode="post_normal",
|
| 109 |
+
|
| 110 |
+
**kwargs,
|
| 111 |
+
):
|
| 112 |
+
self.vocab_size = vocab_size
|
| 113 |
+
self.max_position_embeddings = max_position_embeddings
|
| 114 |
+
self.hidden_size = hidden_size
|
| 115 |
+
self.intermediate_size = intermediate_size
|
| 116 |
+
self.num_hidden_layers = num_hidden_layers
|
| 117 |
+
self.num_attention_heads = num_attention_heads
|
| 118 |
+
self.use_sliding_window = use_sliding_window
|
| 119 |
+
self.sliding_window = sliding_window if use_sliding_window else None
|
| 120 |
+
self.max_window_layers = max_window_layers
|
| 121 |
+
|
| 122 |
+
# for backward compatibility
|
| 123 |
+
if num_key_value_heads is None:
|
| 124 |
+
num_key_value_heads = num_attention_heads
|
| 125 |
+
|
| 126 |
+
self.num_key_value_heads = num_key_value_heads
|
| 127 |
+
self.hidden_act = hidden_act
|
| 128 |
+
self.initializer_range = initializer_range
|
| 129 |
+
self.rms_norm_eps = rms_norm_eps
|
| 130 |
+
self.use_cache = use_cache
|
| 131 |
+
self.rope_theta = rope_theta
|
| 132 |
+
self.attention_dropout = attention_dropout
|
| 133 |
+
|
| 134 |
+
self.embedding_method = config.embedding_method
|
| 135 |
+
self.inf_seq_length = config.inf_seq_length
|
| 136 |
+
self.encoder_mode = config.encoder_mode
|
| 137 |
+
self.num_encoder_layers = config.num_encoder_layers
|
| 138 |
+
self.padding_side = config.padding_side
|
| 139 |
+
|
| 140 |
+
self.keep_max_layer = config.keep_max_layer
|
| 141 |
+
self.pma_num_heads = config.pma_num_heads
|
| 142 |
+
self.pma_ln = config.pma_ln
|
| 143 |
+
self.pma_norm = config.pma_norm
|
| 144 |
+
self.pma_norm_mode = config.pma_norm_mode
|
| 145 |
+
|
| 146 |
+
super().__init__(
|
| 147 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 148 |
+
**kwargs,
|
| 149 |
+
)
|
modeling_d2coder.py
ADDED
|
@@ -0,0 +1,638 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import Qwen2Config
|
| 2 |
+
import inspect
|
| 3 |
+
import math
|
| 4 |
+
import os
|
| 5 |
+
import warnings
|
| 6 |
+
from typing import List, Optional, Tuple, Union
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
import torch.utils.checkpoint
|
| 11 |
+
from torch import nn
|
| 12 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 13 |
+
from transformers import PretrainedConfig
|
| 14 |
+
|
| 15 |
+
from transformers.activations import ACT2FN
|
| 16 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 17 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa, _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
|
| 18 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
| 19 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 20 |
+
from transformers.utils import (
|
| 21 |
+
add_start_docstrings,
|
| 22 |
+
add_start_docstrings_to_model_forward,
|
| 23 |
+
is_flash_attn_2_available,
|
| 24 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 25 |
+
logging,
|
| 26 |
+
replace_return_docstrings,
|
| 27 |
+
)
|
| 28 |
+
import numpy as np
|
| 29 |
+
from transformers import Qwen2Config
|
| 30 |
+
from transformers import Qwen2ForCausalLM
|
| 31 |
+
import inspect
|
| 32 |
+
import math
|
| 33 |
+
import os
|
| 34 |
+
import warnings
|
| 35 |
+
from typing import List, Optional, Tuple, Union
|
| 36 |
+
from tqdm import tqdm, trange
|
| 37 |
+
import torch
|
| 38 |
+
import torch.nn.functional as F
|
| 39 |
+
import torch.utils.checkpoint
|
| 40 |
+
from torch import nn
|
| 41 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 42 |
+
|
| 43 |
+
from transformers.activations import ACT2FN
|
| 44 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 45 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa, _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
|
| 46 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
| 47 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 48 |
+
from transformers.utils import (
|
| 49 |
+
add_start_docstrings,
|
| 50 |
+
add_start_docstrings_to_model_forward,
|
| 51 |
+
is_flash_attn_2_available,
|
| 52 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 53 |
+
logging,
|
| 54 |
+
replace_return_docstrings,
|
| 55 |
+
)
|
| 56 |
+
import numpy as np
|
| 57 |
+
import torch
|
| 58 |
+
import os
|
| 59 |
+
import argparse
|
| 60 |
+
import json
|
| 61 |
+
from tqdm import tqdm
|
| 62 |
+
from typing import cast, List, Union, Tuple
|
| 63 |
+
from transformers import AutoTokenizer, AutoModel # pylint: disable=C0413
|
| 64 |
+
from peft import LoraConfig, get_peft_model, TaskType
|
| 65 |
+
import time
|
| 66 |
+
import torch.nn.functional as F
|
| 67 |
+
import sys
|
| 68 |
+
import time
|
| 69 |
+
import torch
|
| 70 |
+
import torch.nn as nn
|
| 71 |
+
import torch.nn.functional as F
|
| 72 |
+
import numpy as np
|
| 73 |
+
from tqdm import tqdm, trange
|
| 74 |
+
from collections import defaultdict
|
| 75 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, AutoConfig
|
| 76 |
+
import torch.distributed as dist
|
| 77 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 78 |
+
import sys
|
| 79 |
+
import torch
|
| 80 |
+
import torch.nn as nn
|
| 81 |
+
import torch.nn.functional as F
|
| 82 |
+
import math
|
| 83 |
+
import re
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
# PMA部分 post_normal
|
| 87 |
+
class MAB_POST(nn.Module):
|
| 88 |
+
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
|
| 89 |
+
super(MAB_POST, self).__init__()
|
| 90 |
+
self.dim_V = dim_V
|
| 91 |
+
self.num_heads = num_heads
|
| 92 |
+
self.fc_q = nn.Linear(dim_Q, dim_V)
|
| 93 |
+
self.fc_k = nn.Linear(dim_K, dim_V)
|
| 94 |
+
self.fc_v = nn.Linear(dim_K, dim_V)
|
| 95 |
+
|
| 96 |
+
if ln:
|
| 97 |
+
self.ln0 = nn.LayerNorm(dim_V)
|
| 98 |
+
self.ln1 = nn.LayerNorm(dim_V)
|
| 99 |
+
self.fc_o = nn.Linear(dim_V, dim_V)
|
| 100 |
+
nn.init.xavier_uniform_(self.fc_q.weight)
|
| 101 |
+
nn.init.xavier_uniform_(self.fc_k.weight)
|
| 102 |
+
nn.init.xavier_uniform_(self.fc_v.weight)
|
| 103 |
+
nn.init.xavier_uniform_(self.fc_o.weight)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
# Q(bs, 1, emb), pad_mask (bs, seq) Post-LN
|
| 108 |
+
def forward(self, Q, K, pad_mask=None):
|
| 109 |
+
|
| 110 |
+
Q_ = self.fc_q(Q)
|
| 111 |
+
K_, V_ = self.fc_k(K), self.fc_v(K)
|
| 112 |
+
|
| 113 |
+
dim_split = self.dim_V // self.num_heads
|
| 114 |
+
Q_ = torch.cat(Q_.split(dim_split, 2), 0) # (bs* num_head, 1, emb)
|
| 115 |
+
K_ = torch.cat(K_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
| 116 |
+
V_ = torch.cat(V_.split(dim_split, 2), 0)
|
| 117 |
+
|
| 118 |
+
pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1) # (bs*num_head, 1, seq)
|
| 119 |
+
score = Q_.bmm(K_.transpose(1,2))/math.sqrt(self.dim_V)
|
| 120 |
+
score = score.masked_fill(pad_mask == 0, -1e12)
|
| 121 |
+
A = torch.softmax(score, 2) # (bs*num_head, 1, seq)
|
| 122 |
+
A = A * pad_mask
|
| 123 |
+
O = torch.cat(A.bmm(V_).split(Q.size(0), 0), 2) # (bs, 1, emb)
|
| 124 |
+
O = Q + O
|
| 125 |
+
# O = torch.cat((Q_ + A.bmm(V_)).split(Q.size(0), 0), 2)
|
| 126 |
+
O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
|
| 127 |
+
O = O + F.relu(self.fc_o(O))
|
| 128 |
+
O = O if getattr(self, 'ln1', None) is None else self.ln1(O)
|
| 129 |
+
return O
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
# PMA部分 pre_normal
|
| 133 |
+
class MAB_PRE_NORMAL(nn.Module):
|
| 134 |
+
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
|
| 135 |
+
super(MAB_PRE_NORMAL, self).__init__()
|
| 136 |
+
self.dim_V = dim_V
|
| 137 |
+
self.num_heads = num_heads
|
| 138 |
+
self.fc_q = nn.Linear(dim_Q, dim_V)
|
| 139 |
+
self.fc_k = nn.Linear(dim_K, dim_V)
|
| 140 |
+
self.fc_v = nn.Linear(dim_K, dim_V)
|
| 141 |
+
|
| 142 |
+
if ln:
|
| 143 |
+
self.ln_q = nn.LayerNorm(dim_V)
|
| 144 |
+
self.ln_kv = nn.LayerNorm(dim_V)
|
| 145 |
+
self.ln_o = nn.LayerNorm(dim_V)
|
| 146 |
+
self.ln_final = nn.LayerNorm(dim_V)
|
| 147 |
+
|
| 148 |
+
self.fc_o = nn.Linear(dim_V, dim_V)
|
| 149 |
+
nn.init.xavier_uniform_(self.fc_q.weight)
|
| 150 |
+
nn.init.xavier_uniform_(self.fc_k.weight)
|
| 151 |
+
nn.init.xavier_uniform_(self.fc_v.weight)
|
| 152 |
+
nn.init.xavier_uniform_(self.fc_o.weight)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
# pad_mask (bs, seq) Pre-LN 正常架构
|
| 158 |
+
def forward(self, Q, K, pad_mask=None):
|
| 159 |
+
|
| 160 |
+
Q_ = Q if getattr(self, 'ln_q', None) is None else self.ln_q(Q)
|
| 161 |
+
K_ = K if getattr(self, 'ln_kv', None) is None else self.ln_kv(K)
|
| 162 |
+
|
| 163 |
+
Q_ = self.fc_q(Q_)
|
| 164 |
+
K_, V_ = self.fc_k(K_), self.fc_v(K_)
|
| 165 |
+
|
| 166 |
+
dim_split = self.dim_V // self.num_heads
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
Q_ = torch.cat(Q_.split(dim_split, 2), 0) # (bs* num_head, 1, emb)
|
| 170 |
+
K_ = torch.cat(K_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
| 171 |
+
V_ = torch.cat(V_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
| 172 |
+
pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1) # (bs*num_head, 1, seq)
|
| 173 |
+
score = Q_.bmm(K_.transpose(1,2))/math.sqrt(self.dim_V)
|
| 174 |
+
score = score.masked_fill(pad_mask == 0, -1e12)
|
| 175 |
+
A = torch.softmax(score, 2) # (bs*num_head, 1, seq)
|
| 176 |
+
A = A * pad_mask
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
O = torch.cat(A.bmm(V_).split(Q.size(0), 0), 2)
|
| 180 |
+
O = Q + O
|
| 181 |
+
|
| 182 |
+
O_ = O if getattr(self, 'ln_o', None) is None else self.ln_o(O) # O的layernorm分支
|
| 183 |
+
O_ = O + F.relu(self.fc_o(O_))
|
| 184 |
+
return O_ if getattr(self, 'ln_final', None) is None else self.ln_final(O_)
|
| 185 |
+
|
| 186 |
+
# PMA部分 pre_gptj
|
| 187 |
+
class MAB_PRE_GPTJ(nn.Module):
|
| 188 |
+
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
|
| 189 |
+
super(MAB_PRE_GPTJ, self).__init__()
|
| 190 |
+
self.dim_V = dim_V
|
| 191 |
+
self.num_heads = num_heads
|
| 192 |
+
self.fc_q = nn.Linear(dim_Q, dim_V)
|
| 193 |
+
self.fc_k = nn.Linear(dim_K, dim_V)
|
| 194 |
+
self.fc_v = nn.Linear(dim_K, dim_V)
|
| 195 |
+
self.fc_o = nn.Linear(dim_V, dim_V)
|
| 196 |
+
|
| 197 |
+
nn.init.xavier_uniform_(self.fc_q.weight)
|
| 198 |
+
nn.init.xavier_uniform_(self.fc_k.weight)
|
| 199 |
+
nn.init.xavier_uniform_(self.fc_v.weight)
|
| 200 |
+
nn.init.xavier_uniform_(self.fc_o.weight)
|
| 201 |
+
if ln:
|
| 202 |
+
self.ln_q = nn.LayerNorm(dim_V)
|
| 203 |
+
self.ln_kv = nn.LayerNorm(dim_V)
|
| 204 |
+
self.ln_final = nn.LayerNorm(dim_V)
|
| 205 |
+
|
| 206 |
+
# pad_mask (bs, seq)
|
| 207 |
+
def forward(self, Q, K, pad_mask=None):
|
| 208 |
+
|
| 209 |
+
# layernorm
|
| 210 |
+
Q_ = Q if getattr(self, 'ln_q', None) is None else self.ln_q(Q)
|
| 211 |
+
K_ = K if getattr(self, 'ln_kv', None) is None else self.ln_kv(K)
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
Q1 = self.fc_q(Q_)
|
| 215 |
+
K1, V1 = self.fc_k(K_), self.fc_v(K_)
|
| 216 |
+
dim_split = self.dim_V // self.num_heads
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
Q1 = torch.cat(Q1.split(dim_split, 2), 0) # (bs* num_head, 1, emb)
|
| 220 |
+
K1 = torch.cat(K1.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
| 221 |
+
V1 = torch.cat(V1.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1) # (bs*num_head, 1, seq)
|
| 225 |
+
score = Q1.bmm(K1.transpose(1,2))/math.sqrt(self.dim_V)
|
| 226 |
+
score = score.masked_fill(pad_mask == 0, -1e12)
|
| 227 |
+
A = torch.softmax(score, 2) # (bs*num_head, 1, seq)
|
| 228 |
+
A = A * pad_mask
|
| 229 |
+
O1 = torch.cat(A.bmm(V1).split(Q.size(0), 0), 2) # (bs, 1, emb)
|
| 230 |
+
|
| 231 |
+
O2 = F.relu(self.fc_o(Q_)) # (bs, 1, emb)
|
| 232 |
+
|
| 233 |
+
O_final = Q + O1 + O2
|
| 234 |
+
|
| 235 |
+
return O_final if getattr(self, 'ln_final', None) is None else self.ln_final(O_final)
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
class PMA(nn.Module):
|
| 241 |
+
def __init__(self, dim, num_heads, num_seeds, ln=False, pma_mode=None):
|
| 242 |
+
super(PMA, self).__init__()
|
| 243 |
+
self.S = nn.Parameter(torch.Tensor(1, num_seeds, dim))
|
| 244 |
+
nn.init.xavier_uniform_(self.S)
|
| 245 |
+
if pma_mode == 'post_normal':
|
| 246 |
+
self.mab = MAB_POST(dim, dim, dim, num_heads, ln=ln)
|
| 247 |
+
elif pma_mode == 'pre_normal':
|
| 248 |
+
self.mab = MAB_PRE_NORMAL(dim, dim, dim, num_heads, ln=ln)
|
| 249 |
+
elif pma_mode == 'pre_gptj':
|
| 250 |
+
self.mab = MAB_PRE_GPTJ(dim, dim, dim, num_heads, ln=ln)
|
| 251 |
+
else:
|
| 252 |
+
raise ValueError(f"Error, the pma_mode {pma_mode} is not implemented !")
|
| 253 |
+
# X: (bs, seq, emb), pad_mask: (bs, seq)
|
| 254 |
+
def forward(self, X, pad_mask):
|
| 255 |
+
if self.S.dtype != torch.bfloat16:
|
| 256 |
+
X = X.float()
|
| 257 |
+
return self.mab(self.S.repeat(X.size(0), 1, 1), X, pad_mask)
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
# 普通双向transformer encoder, post_normal
|
| 261 |
+
class EncoderLayer_POST(nn.Module):
|
| 262 |
+
def __init__(self, dim_V, num_heads, ln=False):
|
| 263 |
+
super(EncoderLayer_POST, self).__init__()
|
| 264 |
+
self.dim_V = dim_V
|
| 265 |
+
self.num_heads = num_heads
|
| 266 |
+
self.fc_q = nn.Linear(dim_V, dim_V)
|
| 267 |
+
self.fc_k = nn.Linear(dim_V, dim_V)
|
| 268 |
+
self.fc_v = nn.Linear(dim_V, dim_V)
|
| 269 |
+
self.fc_o = nn.Linear(dim_V, dim_V)
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
nn.init.xavier_uniform_(self.fc_q.weight)
|
| 273 |
+
nn.init.xavier_uniform_(self.fc_k.weight)
|
| 274 |
+
nn.init.xavier_uniform_(self.fc_v.weight)
|
| 275 |
+
nn.init.xavier_uniform_(self.fc_o.weight)
|
| 276 |
+
|
| 277 |
+
if ln:
|
| 278 |
+
self.ln0 = nn.LayerNorm(dim_V)
|
| 279 |
+
self.ln1 = nn.LayerNorm(dim_V)
|
| 280 |
+
|
| 281 |
+
# Q:(bs, seq, emb), pad_mask:(bs, seq)
|
| 282 |
+
def forward(self, Q, pad_mask=None):
|
| 283 |
+
|
| 284 |
+
Q_, K_, V_ = self.fc_q(Q), self.fc_k(Q), self.fc_v(Q)
|
| 285 |
+
|
| 286 |
+
dim_split = self.dim_V // self.num_heads
|
| 287 |
+
Q_ = torch.cat(Q_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
| 288 |
+
K_ = torch.cat(K_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
| 289 |
+
V_ = torch.cat(V_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
| 290 |
+
|
| 291 |
+
pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1) # (bs*num_head, seq, seq)
|
| 292 |
+
|
| 293 |
+
score = Q_.bmm(K_.transpose(1,2))/math.sqrt(self.dim_V)
|
| 294 |
+
score = score.masked_fill(pad_mask == 0, -1e12)
|
| 295 |
+
A = torch.softmax(score, 2) # (bs*num_head, seq, seq)
|
| 296 |
+
A = A * pad_mask # (bs*num_head, seq, seq)
|
| 297 |
+
|
| 298 |
+
O = torch.cat(A.bmm(V_).split(Q.size(0), 0), 2) # (bs, seq, emb)
|
| 299 |
+
O = Q + O
|
| 300 |
+
|
| 301 |
+
O = O if getattr(self, 'ln0', None) is None else self.ln0(O)
|
| 302 |
+
O = O + F.relu(self.fc_o(O))
|
| 303 |
+
O = O if getattr(self, 'ln1', None) is None else self.ln1(O)
|
| 304 |
+
return O
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
# 普通双向transformer encoder, pre LN norm
|
| 308 |
+
class EncoderLayer_PRE_NORMAL(nn.Module):
|
| 309 |
+
def __init__(self, dim_V, num_heads, ln=False):
|
| 310 |
+
super(EncoderLayer_PRE_NORMAL, self).__init__()
|
| 311 |
+
self.dim_V = dim_V
|
| 312 |
+
self.num_heads = num_heads
|
| 313 |
+
self.fc_q = nn.Linear(dim_V, dim_V)
|
| 314 |
+
self.fc_k = nn.Linear(dim_V, dim_V)
|
| 315 |
+
self.fc_v = nn.Linear(dim_V, dim_V)
|
| 316 |
+
self.fc_o = nn.Linear(dim_V, dim_V)
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
nn.init.xavier_uniform_(self.fc_q.weight)
|
| 320 |
+
nn.init.xavier_uniform_(self.fc_k.weight)
|
| 321 |
+
nn.init.xavier_uniform_(self.fc_v.weight)
|
| 322 |
+
nn.init.xavier_uniform_(self.fc_o.weight)
|
| 323 |
+
|
| 324 |
+
if ln:
|
| 325 |
+
self.ln_qkv = nn.LayerNorm(dim_V)
|
| 326 |
+
self.ln_o = nn.LayerNorm(dim_V)
|
| 327 |
+
|
| 328 |
+
# Q:(bs, seq, emb), pad_mask:(bs, seq)
|
| 329 |
+
def forward(self, Q, pad_mask=None):
|
| 330 |
+
|
| 331 |
+
Q_ = Q if getattr(self, 'ln_qkv', None) is None else self.ln_qkv(Q) # layernorm
|
| 332 |
+
|
| 333 |
+
Q_, K_, V_ = self.fc_q(Q_), self.fc_k(Q_), self.fc_v(Q_)
|
| 334 |
+
dim_split = self.dim_V // self.num_heads
|
| 335 |
+
Q_ = torch.cat(Q_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
| 336 |
+
K_ = torch.cat(K_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
| 337 |
+
V_ = torch.cat(V_.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
| 338 |
+
pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1) # (bs*num_head, seq, seq)
|
| 339 |
+
score = Q_.bmm(K_.transpose(1,2))/math.sqrt(self.dim_V)
|
| 340 |
+
score = score.masked_fill(pad_mask == 0, -1e12)
|
| 341 |
+
A = torch.softmax(score, 2) # (bs*num_head, seq, seq)
|
| 342 |
+
A = A * pad_mask
|
| 343 |
+
|
| 344 |
+
O = torch.cat(A.bmm(V_).split(Q.size(0), 0), 2)
|
| 345 |
+
O = Q + O
|
| 346 |
+
|
| 347 |
+
O_ = O if getattr(self, 'ln_o', None) is None else self.ln_o(O) # O的layernorm分支
|
| 348 |
+
|
| 349 |
+
O_ = O + F.relu(self.fc_o(O_))
|
| 350 |
+
|
| 351 |
+
return O_
|
| 352 |
+
|
| 353 |
+
# 普通双向transformer encoder, pre LN gptj
|
| 354 |
+
class EncoderLayer_PRE_GPTJ(nn.Module):
|
| 355 |
+
def __init__(self, dim_V, num_heads, ln=False):
|
| 356 |
+
super(EncoderLayer_PRE_GPTJ, self).__init__()
|
| 357 |
+
self.dim_V = dim_V
|
| 358 |
+
self.num_heads = num_heads
|
| 359 |
+
self.fc_q = nn.Linear(dim_V, dim_V)
|
| 360 |
+
self.fc_k = nn.Linear(dim_V, dim_V)
|
| 361 |
+
self.fc_v = nn.Linear(dim_V, dim_V)
|
| 362 |
+
self.fc_o = nn.Linear(dim_V, dim_V)
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
nn.init.xavier_uniform_(self.fc_q.weight)
|
| 366 |
+
nn.init.xavier_uniform_(self.fc_k.weight)
|
| 367 |
+
nn.init.xavier_uniform_(self.fc_v.weight)
|
| 368 |
+
nn.init.xavier_uniform_(self.fc_o.weight)
|
| 369 |
+
|
| 370 |
+
if ln:
|
| 371 |
+
self.ln_qkv = nn.LayerNorm(dim_V)
|
| 372 |
+
|
| 373 |
+
# Q:(bs, seq, emb), pad_mask:(bs, seq)
|
| 374 |
+
def forward(self, Q, pad_mask=None):
|
| 375 |
+
|
| 376 |
+
Q_ = Q if getattr(self, 'ln_qkv', None) is None else self.ln_qkv(Q) # layernorm
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
Q1, K1, V1 = self.fc_q(Q_), self.fc_k(Q_), self.fc_v(Q_)
|
| 380 |
+
dim_split = self.dim_V // self.num_heads
|
| 381 |
+
Q1 = torch.cat(Q1.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
| 382 |
+
K1 = torch.cat(K1.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
| 383 |
+
V1 = torch.cat(V1.split(dim_split, 2), 0) # (bs* num_head, seq, emb)
|
| 384 |
+
pad_mask = pad_mask.unsqueeze(1).repeat(self.num_heads, Q.size(1), 1) # (bs*num_head, seq, seq)
|
| 385 |
+
score = Q1.bmm(K1.transpose(1,2))/math.sqrt(self.dim_V)
|
| 386 |
+
score = score.masked_fill(pad_mask == 0, -1e12)
|
| 387 |
+
A = torch.softmax(score, 2) # (bs*num_head, seq, seq)
|
| 388 |
+
A = A * pad_mask
|
| 389 |
+
O1 = torch.cat(A.bmm(V1).split(Q.size(0), 0), 2) # (bs, seq, emb)
|
| 390 |
+
|
| 391 |
+
O2 = F.relu(self.fc_o(Q_))
|
| 392 |
+
|
| 393 |
+
O_final = Q + O1 + O2
|
| 394 |
+
|
| 395 |
+
return O_final
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
class Encoder(nn.Module):
|
| 399 |
+
def __init__(self, emb_dim, num_heads, ln, encoder_mode, num_encoder_layers):
|
| 400 |
+
super(Encoder, self).__init__()
|
| 401 |
+
self.num_encoder_layers = num_encoder_layers
|
| 402 |
+
if encoder_mode == 'post_normal':
|
| 403 |
+
self.layers = nn.ModuleList([EncoderLayer_POST(dim_V=emb_dim, num_heads=num_heads, ln=ln)
|
| 404 |
+
for _ in range(num_encoder_layers)])
|
| 405 |
+
elif encoder_mode == 'pre_normal':
|
| 406 |
+
self.layers = nn.ModuleList([EncoderLayer_PRE_NORMAL(dim_V=emb_dim, num_heads=num_heads, ln=ln)
|
| 407 |
+
for _ in range(num_encoder_layers)])
|
| 408 |
+
elif encoder_mode == 'pre_gptj':
|
| 409 |
+
self.layers = nn.ModuleList([EncoderLayer_PRE_GPTJ(dim_V=emb_dim, num_heads=num_heads, ln=ln)
|
| 410 |
+
for _ in range(num_encoder_layers)])
|
| 411 |
+
else:
|
| 412 |
+
raise ValueError(f"Error, the encoder_mode {encoder_mode} is not implemented !")
|
| 413 |
+
|
| 414 |
+
# X:(bs, seq, emb), mask: (bs, seq)
|
| 415 |
+
def forward(self, X, mask):
|
| 416 |
+
if self.num_encoder_layers == 0:
|
| 417 |
+
return X
|
| 418 |
+
if self.layers[0].fc_q.weight.dtype != torch.bfloat16:
|
| 419 |
+
X = X.float()
|
| 420 |
+
for layer in self.layers:
|
| 421 |
+
X = layer(X, mask)
|
| 422 |
+
|
| 423 |
+
return X
|
| 424 |
+
|
| 425 |
+
class D2LLMConfig(PretrainedConfig):
|
| 426 |
+
model_type = "qwen2"
|
| 427 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 428 |
+
|
| 429 |
+
def __init__(
|
| 430 |
+
self,
|
| 431 |
+
vocab_size=151936,
|
| 432 |
+
hidden_size=4096,
|
| 433 |
+
intermediate_size=22016,
|
| 434 |
+
num_hidden_layers=32,
|
| 435 |
+
num_attention_heads=32,
|
| 436 |
+
num_key_value_heads=32,
|
| 437 |
+
hidden_act="silu",
|
| 438 |
+
max_position_embeddings=32768,
|
| 439 |
+
initializer_range=0.02,
|
| 440 |
+
rms_norm_eps=1e-6,
|
| 441 |
+
use_cache=True,
|
| 442 |
+
tie_word_embeddings=False,
|
| 443 |
+
rope_theta=10000.0,
|
| 444 |
+
use_sliding_window=False,
|
| 445 |
+
sliding_window=4096,
|
| 446 |
+
max_window_layers=28,
|
| 447 |
+
attention_dropout=0.0,
|
| 448 |
+
**kwargs,
|
| 449 |
+
):
|
| 450 |
+
self.vocab_size = vocab_size
|
| 451 |
+
self.max_position_embeddings = max_position_embeddings
|
| 452 |
+
self.hidden_size = hidden_size
|
| 453 |
+
self.intermediate_size = intermediate_size
|
| 454 |
+
self.num_hidden_layers = num_hidden_layers
|
| 455 |
+
self.num_attention_heads = num_attention_heads
|
| 456 |
+
self.use_sliding_window = use_sliding_window
|
| 457 |
+
self.sliding_window = sliding_window if use_sliding_window else None
|
| 458 |
+
self.max_window_layers = max_window_layers
|
| 459 |
+
|
| 460 |
+
# for backward compatibility
|
| 461 |
+
if num_key_value_heads is None:
|
| 462 |
+
num_key_value_heads = num_attention_heads
|
| 463 |
+
|
| 464 |
+
self.num_key_value_heads = num_key_value_heads
|
| 465 |
+
self.hidden_act = hidden_act
|
| 466 |
+
self.initializer_range = initializer_range
|
| 467 |
+
self.rms_norm_eps = rms_norm_eps
|
| 468 |
+
self.use_cache = use_cache
|
| 469 |
+
self.rope_theta = rope_theta
|
| 470 |
+
self.attention_dropout = attention_dropout
|
| 471 |
+
|
| 472 |
+
super().__init__(
|
| 473 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 474 |
+
**kwargs,
|
| 475 |
+
)
|
| 476 |
+
|
| 477 |
+
|
| 478 |
+
class D2Coder(PreTrainedModel):
|
| 479 |
+
|
| 480 |
+
def __init__(self, config):
|
| 481 |
+
super().__init__(config)
|
| 482 |
+
self.plm_model = Qwen2ForCausalLM(config)
|
| 483 |
+
|
| 484 |
+
self.embedding_method = config.embedding_method
|
| 485 |
+
self.inf_seq_length = config.inf_seq_length
|
| 486 |
+
self.encoder_mode = config.encoder_mode
|
| 487 |
+
self.num_encoder_layers = config.num_encoder_layers
|
| 488 |
+
self.padding_side = config.padding_side
|
| 489 |
+
|
| 490 |
+
self.keep_max_layer = config.keep_max_layer
|
| 491 |
+
self.emb_dim = self.plm_model.model.embed_tokens.weight.size(1)
|
| 492 |
+
self.num_heads = config.pma_num_heads
|
| 493 |
+
self.ln = config.pma_ln
|
| 494 |
+
self.norm = config.pma_norm
|
| 495 |
+
self.pma_mode = config.pma_norm_mode
|
| 496 |
+
self.encoder = Encoder(self.emb_dim, self.num_heads, self.ln, self.encoder_mode, self.num_encoder_layers)
|
| 497 |
+
self.mha_pma = PMA(self.emb_dim, self.num_heads, 1, ln=self.ln, pma_mode=self.pma_mode)
|
| 498 |
+
|
| 499 |
+
def forward(self, inputs_all, mode, args):
|
| 500 |
+
# output_embeddings_a = self.get_sentence_embedding(self.embedding_method, **inputs_a)
|
| 501 |
+
|
| 502 |
+
# output_embeddings_b = self.get_sentence_embedding(self.embedding_method, **inputs_b) # (bs, emb_size)
|
| 503 |
+
bs = self.args.batch_size
|
| 504 |
+
if mode == 'train':
|
| 505 |
+
output_embeddings_all = self.get_sentence_embedding(self.embedding_method, **inputs_all).reshape(2+self.args.neg_K, bs, -1) # (2+K, bs, emb_size)
|
| 506 |
+
# if self.to_compress:
|
| 507 |
+
# output_embeddings_all = self.projector(output_embeddings_all)
|
| 508 |
+
|
| 509 |
+
output_embeddings_hardneg = output_embeddings_all[2:] # (neg_K, bs, emb)
|
| 510 |
+
hn_norm = torch.nn.functional.normalize(output_embeddings_hardneg, p=2, dim=-1)
|
| 511 |
+
elif mode == 'eval':
|
| 512 |
+
output_embeddings_all = self.get_sentence_embedding(self.embedding_method, **inputs_all).reshape(2, bs, -1) # (2, bs, emb_size)
|
| 513 |
+
# if self.to_compress:
|
| 514 |
+
# output_embeddings_all = self.projector(output_embeddings_all)
|
| 515 |
+
else:
|
| 516 |
+
raise ValueError('Error of mode value')
|
| 517 |
+
|
| 518 |
+
output_embeddings_a = output_embeddings_all[0] # (bs, emb)
|
| 519 |
+
output_embeddings_b = output_embeddings_all[1] # (bs, emb)
|
| 520 |
+
a_norm = torch.nn.functional.normalize(output_embeddings_a, p=2, dim=-1)
|
| 521 |
+
b_norm = torch.nn.functional.normalize(output_embeddings_b, p=2, dim=-1)
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
|
| 525 |
+
b_cross_gpus = gather_across_devices(output_embeddings_b, args.global_rank, self.world_size)
|
| 526 |
+
b_norm_cross_gpus = torch.nn.functional.normalize(b_cross_gpus, p=2, dim=-1) # ()
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
assert a_norm.size(0) == b_norm.size(0)
|
| 530 |
+
bs = output_embeddings_a.size(0)
|
| 531 |
+
# in-batch计算部分
|
| 532 |
+
output_in_batch_local_gpu = torch.matmul(a_norm, b_norm.t())
|
| 533 |
+
output_in_batch_global_gpu = torch.matmul(a_norm, b_norm_cross_gpus.t())
|
| 534 |
+
|
| 535 |
+
if mode == 'train':
|
| 536 |
+
# hard neg计算部分
|
| 537 |
+
pos_neg_emb = torch.cat([b_norm.unsqueeze(0), hn_norm], dim=0) # (1+neg_K, bs, emb)
|
| 538 |
+
output_hardneg_specific_task = torch.matmul(a_norm.unsqueeze(1), pos_neg_emb.permute(1,2,0)).squeeze() # (bs, 1+neg_K)
|
| 539 |
+
# output_pos_hardneg_rep_specific_task = torch.cat([output_embeddings_a.unsqueeze(0).expand(pos_neg_emb.size(0),-1,-1), pos_neg_emb],dim=-1)
|
| 540 |
+
|
| 541 |
+
elif mode == 'eval':
|
| 542 |
+
output_hardneg_specific_task = None
|
| 543 |
+
output_pos_hardneg_rep_specific_task = None
|
| 544 |
+
|
| 545 |
+
return output_in_batch_local_gpu, output_in_batch_global_gpu, output_hardneg_specific_task # (bs, bs) (bs, world_size*bs), (bs, 1+neg_K)
|
| 546 |
+
# return output_in_batch_specific_task, output_hardneg_specific_task, output_pos_hardneg_rep_specific_task
|
| 547 |
+
|
| 548 |
+
def last_embedding(self, A, index):
|
| 549 |
+
bs, seq, emb = A.size()
|
| 550 |
+
res = A[torch.arange(bs), index, :]
|
| 551 |
+
return res
|
| 552 |
+
|
| 553 |
+
def mean_embedding(self, A, mask):
|
| 554 |
+
bs, seq, emb = A.size()
|
| 555 |
+
res = (A * (mask.unsqueeze(-1))).sum(1) / (mask.sum(1).unsqueeze(-1))
|
| 556 |
+
return res
|
| 557 |
+
|
| 558 |
+
# A (bs, seq, emb_size), mask (bs, 1, seq)
|
| 559 |
+
def weighted_embedding(self, A, mask):
|
| 560 |
+
weights = (torch.arange(start=1, end=A.size(1) + 1).unsqueeze(0).unsqueeze(-1).expand(A.size()).float()).to(A.device)
|
| 561 |
+
input_mask_expanded = (mask.squeeze(1).unsqueeze(-1).expand(A.size()).float()).to(A.device)
|
| 562 |
+
sum_embedding = torch.sum(A * input_mask_expanded * weights, dim=1)
|
| 563 |
+
sum_mask = torch.sum(input_mask_expanded * weights, dim=1)
|
| 564 |
+
weighted_embedding = sum_embedding / sum_mask
|
| 565 |
+
|
| 566 |
+
return weighted_embedding
|
| 567 |
+
|
| 568 |
+
def pma_embedding(self, A, mask):
|
| 569 |
+
res = self.mha_pma(A, mask).squeeze(1)
|
| 570 |
+
return res
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
def get_sentence_embedding(self, embedding_method, **inputs):
|
| 574 |
+
outputs = self.plm_model(inputs['input_ids'], inputs['attention_mask'], output_hidden_states=True)
|
| 575 |
+
if embedding_method == 'last':
|
| 576 |
+
embedding = outputs.hidden_states[self.keep_max_layer]
|
| 577 |
+
index = inputs['attention_mask'].sum(-1).long() - 1
|
| 578 |
+
res_embedding = self.last_embedding(embedding, index)
|
| 579 |
+
elif embedding_method == 'mean':
|
| 580 |
+
embedding = outputs.hidden_states[self.keep_max_layer]
|
| 581 |
+
res_embedding = self.mean_embedding(embedding, inputs['attention_mask'])
|
| 582 |
+
elif embedding_method == 'weighted':
|
| 583 |
+
embedding = outputs.hidden_states[self.keep_max_layer]
|
| 584 |
+
res_embedding = self.weighted_embedding(embedding, inputs['attention_mask'])
|
| 585 |
+
elif embedding_method == 'pma':
|
| 586 |
+
embedding = outputs.hidden_states[self.keep_max_layer] # Qwen.hidden_state: (33, bs, seq, emb)
|
| 587 |
+
attention_mask = inputs['attention_mask']
|
| 588 |
+
embedding = self.encoder(embedding, attention_mask)
|
| 589 |
+
res_embedding = self.pma_embedding(embedding, attention_mask) # embedding: (bs, seq, emb), inputs['attention_mask']: (bs, seq)
|
| 590 |
+
else:
|
| 591 |
+
logger.debug('Error, no {} way to obtain embbedings'.format(embedding_method))
|
| 592 |
+
|
| 593 |
+
if not self.norm:
|
| 594 |
+
res_embedding = torch.nn.functional.normalize(res_embedding, p=2.0, dim=-1, eps=1e-12, out=None)
|
| 595 |
+
return res_embedding
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
|
| 599 |
+
def encode(self, tokenizer, sentences, batch_size=32, convert_to_numpy=True,
|
| 600 |
+
convert_to_tensor=False, show_progress_bar=True, max_seq_length=None, **kwargs):
|
| 601 |
+
|
| 602 |
+
if max_seq_length is None:
|
| 603 |
+
max_seq_length = self.inf_seq_length
|
| 604 |
+
|
| 605 |
+
input_is_string = False
|
| 606 |
+
if isinstance(sentences, str) or not hasattr(sentences, "__len__"):
|
| 607 |
+
sentences = [sentences]
|
| 608 |
+
input_is_string = True
|
| 609 |
+
|
| 610 |
+
|
| 611 |
+
all_embeddings = []
|
| 612 |
+
length_sorted_idx = np.argsort([-len(s) for s in sentences])
|
| 613 |
+
sentences_sorted = [sentences[idx] for idx in length_sorted_idx] # 大到小重排
|
| 614 |
+
with torch.no_grad():
|
| 615 |
+
for start_index in trange(0, len(sentences), batch_size, desc="Batches", disable=not show_progress_bar):
|
| 616 |
+
sentences_batch = sentences_sorted[start_index: start_index + batch_size]
|
| 617 |
+
# Compute sentences embeddingsz
|
| 618 |
+
with torch.no_grad():
|
| 619 |
+
inputs = tokenizer(sentences_batch, padding=True, truncation=True, max_length=max_seq_length, add_special_tokens=False, return_tensors='pt').to(self.plm_model.device)
|
| 620 |
+
embeddings = self.get_sentence_embedding(self.embedding_method, **inputs)
|
| 621 |
+
# if self.to_compress:
|
| 622 |
+
# embeddings = self.projector(embeddings)
|
| 623 |
+
embeddings = embeddings.detach()
|
| 624 |
+
if convert_to_numpy:
|
| 625 |
+
if embeddings.dtype == torch.bfloat16:
|
| 626 |
+
embeddings = embeddings.cpu().to(torch.float32)
|
| 627 |
+
else:
|
| 628 |
+
embeddings = embeddings.cpu()
|
| 629 |
+
all_embeddings.extend(embeddings)
|
| 630 |
+
all_embeddings = [all_embeddings[idx] for idx in np.argsort(length_sorted_idx)]
|
| 631 |
+
if convert_to_tensor:
|
| 632 |
+
all_embeddings = torch.stack(all_embeddings)
|
| 633 |
+
elif convert_to_numpy:
|
| 634 |
+
all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
|
| 635 |
+
|
| 636 |
+
if input_is_string:
|
| 637 |
+
all_embeddings = all_embeddings[0]
|
| 638 |
+
return all_embeddings
|