File size: 2,341 Bytes
feb33a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import torch
from diffsynth.pipelines.flux_image_new import FluxImagePipeline, ModelConfig, ControlNetInput
from modelscope import dataset_snapshot_download
from modelscope import snapshot_download
from PIL import Image
import numpy as np
snapshot_download(
"ByteDance/InfiniteYou",
allow_file_pattern="supports/insightface/models/antelopev2/*",
local_dir="models/ByteDance/InfiniteYou",
)
pipe = FluxImagePipeline.from_pretrained(
torch_dtype=torch.bfloat16,
device="cuda",
model_configs=[
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="flux1-dev.safetensors"),
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder/model.safetensors"),
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder_2/"),
ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="ae.safetensors"),
ModelConfig(model_id="ByteDance/InfiniteYou", origin_file_pattern="infu_flux_v1.0/aes_stage2/image_proj_model.bin"),
ModelConfig(model_id="ByteDance/InfiniteYou", origin_file_pattern="infu_flux_v1.0/aes_stage2/InfuseNetModel/*.safetensors"),
],
)
dataset_snapshot_download(
dataset_id="DiffSynth-Studio/examples_in_diffsynth",
local_dir="./",
allow_file_pattern=f"data/examples/infiniteyou/*",
)
height, width = 1024, 1024
controlnet_image = Image.fromarray(np.zeros([height, width, 3]).astype(np.uint8))
controlnet_inputs = [ControlNetInput(image=controlnet_image, scale=1.0, processor_id="None")]
prompt = "A man, portrait, cinematic"
id_image = "data/examples/infiniteyou/man.jpg"
id_image = Image.open(id_image).convert('RGB')
image = pipe(
prompt=prompt, seed=1,
infinityou_id_image=id_image, infinityou_guidance=1.0,
controlnet_inputs=controlnet_inputs,
num_inference_steps=50, embedded_guidance=3.5,
height=height, width=width,
)
image.save("man.jpg")
prompt = "A woman, portrait, cinematic"
id_image = "data/examples/infiniteyou/woman.jpg"
id_image = Image.open(id_image).convert('RGB')
image = pipe(
prompt=prompt, seed=1,
infinityou_id_image=id_image, infinityou_guidance=1.0,
controlnet_inputs=controlnet_inputs,
num_inference_steps=50, embedded_guidance=3.5,
height=height, width=width,
)
image.save("woman.jpg") |