File size: 4,995 Bytes
feb33a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import torch
import random
from PIL import Image, ImageDraw, ImageFont
from modelscope import dataset_snapshot_download, snapshot_download
from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig

def visualize_masks(image, masks, mask_prompts, output_path, font_size=35, use_random_colors=False):
    # Create a blank image for overlays
    overlay = Image.new('RGBA', image.size, (0, 0, 0, 0))

    colors = [
        (165, 238, 173, 80),
        (76, 102, 221, 80),
        (221, 160, 77, 80),
        (204, 93, 71, 80),
        (145, 187, 149, 80),
        (134, 141, 172, 80),
        (157, 137, 109, 80),
        (153, 104, 95, 80),
        (165, 238, 173, 80),
        (76, 102, 221, 80),
        (221, 160, 77, 80),
        (204, 93, 71, 80),
        (145, 187, 149, 80),
        (134, 141, 172, 80),
        (157, 137, 109, 80),
        (153, 104, 95, 80),
    ]
    # Generate random colors for each mask
    if use_random_colors:
        colors = [(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255), 80) for _ in range(len(masks))]

    # Font settings
    try:
        font = ImageFont.truetype("wqy-zenhei.ttc", font_size)  # Adjust as needed
    except IOError:
        font = ImageFont.load_default(font_size)

    # Overlay each mask onto the overlay image
    for mask, mask_prompt, color in zip(masks, mask_prompts, colors):
        # Convert mask to RGBA mode
        mask_rgba = mask.convert('RGBA')
        mask_data = mask_rgba.getdata()
        new_data = [(color if item[:3] == (255, 255, 255) else (0, 0, 0, 0)) for item in mask_data]
        mask_rgba.putdata(new_data)

        # Draw the mask prompt text on the mask
        draw = ImageDraw.Draw(mask_rgba)
        mask_bbox = mask.getbbox()  # Get the bounding box of the mask
        text_position = (mask_bbox[0] + 10, mask_bbox[1] + 10)  # Adjust text position based on mask position
        draw.text(text_position, mask_prompt, fill=(255, 255, 255, 255), font=font)

        # Alpha composite the overlay with this mask
        overlay = Image.alpha_composite(overlay, mask_rgba)

    # Composite the overlay onto the original image
    result = Image.alpha_composite(image.convert('RGBA'), overlay)

    # Save or display the resulting image
    result.save(output_path)

    return result

def example(pipe, seeds, example_id, global_prompt, entity_prompts):
    dataset_snapshot_download(dataset_id="DiffSynth-Studio/examples_in_diffsynth", local_dir="./", allow_file_pattern=f"data/examples/eligen/qwen-image/example_{example_id}/*.png")
    masks = [Image.open(f"./data/examples/eligen/qwen-image/example_{example_id}/{i}.png").convert('RGB').resize((1024, 1024)) for i in range(len(entity_prompts))]
    negative_prompt = "网格化,规则的网格,模糊, 低分辨率, 低质量, 变形, 畸形, 错误的解剖学, 变形的手, 变形的身体, 变形的脸, 变形的头发, 变形的眼睛, 变形的嘴巴"
    for seed in seeds:
        # generate image
        image = pipe(
            prompt=global_prompt,
            cfg_scale=4.0,
            negative_prompt=negative_prompt,
            num_inference_steps=40,
            seed=seed,
            height=1024,
            width=1024,
            eligen_entity_prompts=entity_prompts,
            eligen_entity_masks=masks,
        )
        image.save(f"eligen_example_{example_id}_{seed}.png")
        visualize_masks(image, masks, entity_prompts, f"eligen_example_{example_id}_mask_{seed}.png")


pipe = QwenImagePipeline.from_pretrained(
    torch_dtype=torch.bfloat16,
    device="cuda",
    model_configs=[
        ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"),
        ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"),
        ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"),
    ],
    tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"),
)
snapshot_download("DiffSynth-Studio/Qwen-Image-EliGen-V2", local_dir="models/DiffSynth-Studio/Qwen-Image-EliGen-V2", allow_file_pattern="model.safetensors")
pipe.load_lora(pipe.dit, "models/DiffSynth-Studio/Qwen-Image-EliGen-V2/model.safetensors")

seeds = [0]

global_prompt = "写实摄影风格. A beautiful asia woman wearing white dress, she is holding a mirror with her right arm, with a beach background."
entity_prompts = ["A beautiful woman", "mirror", "necklace", "glasses", "earring", "white dress", "jewelry headpiece"]
example(pipe, seeds, 7, global_prompt, entity_prompts)

global_prompt = "写实摄影风格, 细节丰富。街头一位漂亮的女孩,穿着衬衫和短裤,手持写有“实体控制”的标牌,背景是繁忙的城市街道,阳光明媚,行人匆匆。"
entity_prompts = ["一个漂亮的女孩", "标牌 '实体控制'", "短裤", "衬衫"]
example(pipe, seeds, 4, global_prompt, entity_prompts)