jiaxi2002's picture
Upload folder using huggingface_hub
feb33a0 verified
import torch, os, json
from diffsynth import load_state_dict
from diffsynth.pipelines.wan_video_new import WanVideoPipeline, ModelConfig
from diffsynth.trainers.utils import DiffusionTrainingModule, ModelLogger, launch_training_task, wan_parser
from diffsynth.trainers.unified_dataset import UnifiedDataset, LoadVideo, LoadAudio, ImageCropAndResize, ToAbsolutePath
os.environ["TOKENIZERS_PARALLELISM"] = "false"
class WanTrainingModule(DiffusionTrainingModule):
def __init__(
self,
model_paths=None, model_id_with_origin_paths=None, audio_processor_config=None,
trainable_models=None,
lora_base_model=None, lora_target_modules="q,k,v,o,ffn.0,ffn.2", lora_rank=32, lora_checkpoint=None,
use_gradient_checkpointing=True,
use_gradient_checkpointing_offload=False,
extra_inputs=None,
max_timestep_boundary=1.0,
min_timestep_boundary=0.0,
):
super().__init__()
# Load models
model_configs = self.parse_model_configs(model_paths, model_id_with_origin_paths, enable_fp8_training=False)
if audio_processor_config is not None:
audio_processor_config = ModelConfig(model_id=audio_processor_config.split(":")[0], origin_file_pattern=audio_processor_config.split(":")[1])
self.pipe = WanVideoPipeline.from_pretrained(torch_dtype=torch.bfloat16, device="cpu", model_configs=model_configs, audio_processor_config=audio_processor_config)
# Training mode
self.switch_pipe_to_training_mode(
self.pipe, trainable_models,
lora_base_model, lora_target_modules, lora_rank, lora_checkpoint=lora_checkpoint,
enable_fp8_training=False,
)
# Store other configs
self.use_gradient_checkpointing = use_gradient_checkpointing
self.use_gradient_checkpointing_offload = use_gradient_checkpointing_offload
self.extra_inputs = extra_inputs.split(",") if extra_inputs is not None else []
self.max_timestep_boundary = max_timestep_boundary
self.min_timestep_boundary = min_timestep_boundary
def forward_preprocess(self, data):
# CFG-sensitive parameters
inputs_posi = {"prompt": data["prompt"]}
inputs_nega = {}
# CFG-unsensitive parameters
inputs_shared = {
# Assume you are using this pipeline for inference,
# please fill in the input parameters.
"input_video": data["video"],
"height": data["video"][0].size[1],
"width": data["video"][0].size[0],
"num_frames": len(data["video"]),
# Please do not modify the following parameters
# unless you clearly know what this will cause.
"cfg_scale": 1,
"tiled": False,
"rand_device": self.pipe.device,
"use_gradient_checkpointing": self.use_gradient_checkpointing,
"use_gradient_checkpointing_offload": self.use_gradient_checkpointing_offload,
"cfg_merge": False,
"vace_scale": 1,
"max_timestep_boundary": self.max_timestep_boundary,
"min_timestep_boundary": self.min_timestep_boundary,
}
# Extra inputs
for extra_input in self.extra_inputs:
if extra_input == "input_image":
inputs_shared["input_image"] = data["video"][0]
elif extra_input == "end_image":
inputs_shared["end_image"] = data["video"][-1]
elif extra_input == "reference_image" or extra_input == "vace_reference_image":
inputs_shared[extra_input] = data[extra_input][0]
else:
inputs_shared[extra_input] = data[extra_input]
# Pipeline units will automatically process the input parameters.
for unit in self.pipe.units:
inputs_shared, inputs_posi, inputs_nega = self.pipe.unit_runner(unit, self.pipe, inputs_shared, inputs_posi, inputs_nega)
return {**inputs_shared, **inputs_posi}
def forward(self, data, inputs=None):
if inputs is None: inputs = self.forward_preprocess(data)
models = {name: getattr(self.pipe, name) for name in self.pipe.in_iteration_models}
loss = self.pipe.training_loss(**models, **inputs)
return loss
if __name__ == "__main__":
parser = wan_parser()
args = parser.parse_args()
dataset = UnifiedDataset(
base_path=args.dataset_base_path,
metadata_path=args.dataset_metadata_path,
repeat=args.dataset_repeat,
data_file_keys=args.data_file_keys.split(","),
main_data_operator=UnifiedDataset.default_video_operator(
base_path=args.dataset_base_path,
max_pixels=args.max_pixels,
height=args.height,
width=args.width,
height_division_factor=16,
width_division_factor=16,
num_frames=args.num_frames,
time_division_factor=4,
time_division_remainder=1,
),
special_operator_map={
"animate_face_video": ToAbsolutePath(args.dataset_base_path) >> LoadVideo(args.num_frames, 4, 1, frame_processor=ImageCropAndResize(512, 512, None, 16, 16)),
"input_audio": ToAbsolutePath(args.dataset_base_path) >> LoadAudio(sr=16000),
}
)
model = WanTrainingModule(
model_paths=args.model_paths,
model_id_with_origin_paths=args.model_id_with_origin_paths,
audio_processor_config=args.audio_processor_config,
trainable_models=args.trainable_models,
lora_base_model=args.lora_base_model,
lora_target_modules=args.lora_target_modules,
lora_rank=args.lora_rank,
lora_checkpoint=args.lora_checkpoint,
use_gradient_checkpointing_offload=args.use_gradient_checkpointing_offload,
extra_inputs=args.extra_inputs,
max_timestep_boundary=args.max_timestep_boundary,
min_timestep_boundary=args.min_timestep_boundary,
)
model_logger = ModelLogger(
args.output_path,
remove_prefix_in_ckpt=args.remove_prefix_in_ckpt
)
launch_training_task(dataset, model, model_logger, args=args)