import torch from diffsynth.pipelines.flux_image_new import FluxImagePipeline, ModelConfig from PIL import Image import os import json # for i in range(2): # pipe.load_lora(pipe.dit, f"models/train/FLUX.1_lora_1126/epoch-{i}.safetensors", alpha=1) # step = 25 # input_path = "dataset/multi_frame" # base_path = f"validate_result/multi_frame{step}" # save_path = f"{base_path}/epoch{i}" # save_path_GT = f"{base_path}/GT" # os.makedirs(save_path, exist_ok=True) # os.makedirs(save_path_GT, exist_ok=True) # for img in os.listdir(input_path): # image = Image.open(os.path.join(input_path,img)) # image.save(os.path.join(save_path_GT,img)) # prompt="Convert this image into a line art style: retain the original scenes and characters unchanged, present it as a black-and-white sketch effect, and make it suitable for storyboard design. Requirements: use bold and powerful lines, highlight structures and textures with concise strokes, adopt a style close to comic sketching, roughly outline the scenes and character movements with simple lines, prohibit the depiction of details, and represent the characters' facial features with the simplest lines.", # # prompt = "Convert this image into a mbti style" # for fig in os.listdir(input_path): # if not fig.endswith(".png"): # continue # image = pipe( # prompt = prompt, # kontext_images=Image.open(os.path.join(input_path,fig)).resize((768, 768)), # height=768, width=768, # seed=0, # num_inference_steps=step # ) # image.save(os.path.join(save_path,fig)) for i in range(2): pipe = FluxImagePipeline.from_pretrained( torch_dtype=torch.bfloat16, device="cuda", model_configs=[ ModelConfig(model_id="black-forest-labs/FLUX.1-Kontext-dev", origin_file_pattern="flux1-kontext-dev.safetensors"), ModelConfig(model_id="black-forest-labs/FLUX.1-Kontext-dev", origin_file_pattern="text_encoder/model.safetensors"), ModelConfig(model_id="black-forest-labs/FLUX.1-Kontext-dev", origin_file_pattern="text_encoder_2/"), ModelConfig(model_id="black-forest-labs/FLUX.1-Kontext-dev", origin_file_pattern="ae.safetensors"), ], ) pipe.load_lora(pipe.dit, f"models/train/FLUX.1_lora_1126/epoch-{i}.safetensors", alpha=1) step = 25 base_path = "/fi-lib/workspace/sjx/DiffSynth-Studio/validate_result/t2i_1201{step}" save_path = f"{base_path}/epoch{i}" os.makedirs(save_path, exist_ok=True) with open("nano_comprehension_1201.txt", "r") as f: prompts = f.readlines() for prompt in prompts: prompt = prompt.strip() if prompt == "": continue prompt_dict = json.loads(prompt) fig = f"{prompt_dict["Image_Name"]}.png" del prompt_dict["Image_Name"] prompt = json.dumps(prompt_dict, ensure_ascii=False) image = pipe( prompt = prompt, height=768, width=768, seed=0, num_inference_steps=step ) image.save(os.path.join(save_path,fig))