import torch from diffsynth.pipelines.flux_image_new import FluxImagePipeline, ModelConfig pipe = FluxImagePipeline.from_pretrained( torch_dtype=torch.bfloat16, device="cuda", model_configs=[ ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="flux1-dev.safetensors"), ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder/model.safetensors"), ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder_2/"), ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="ae.safetensors"), ModelConfig(model_id="DiffSynth-Studio/LoRA-Encoder-FLUX.1-Dev", origin_file_pattern="model.safetensors"), ], ) pipe.enable_lora_magic() lora = ModelConfig(model_id="VoidOc/flux_animal_forest1", origin_file_pattern="20.safetensors") pipe.load_lora(pipe.dit, lora, hotload=True) # Use `pipe.clear_lora()` to drop the loaded LoRA. # Empty prompt can automatically activate LoRA capabilities. image = pipe(prompt="", seed=0, lora_encoder_inputs=lora) image.save("image_1.jpg") image = pipe(prompt="", seed=0) image.save("image_1_origin.jpg") # Prompt without trigger words can also activate LoRA capabilities. image = pipe(prompt="a car", seed=0, lora_encoder_inputs=lora) image.save("image_2.jpg") image = pipe(prompt="a car", seed=0,) image.save("image_2_origin.jpg") # Adjust the activation intensity through the scale parameter. image = pipe(prompt="a cat", seed=0, lora_encoder_inputs=lora, lora_encoder_scale=1.0) image.save("image_3.jpg") image = pipe(prompt="a cat", seed=0, lora_encoder_inputs=lora, lora_encoder_scale=0.5) image.save("image_3_scale.jpg")