import torch from diffsynth.pipelines.flux_image_new import FluxImagePipeline, ModelConfig, ControlNetInput from diffsynth import load_state_dict from PIL import Image pipe = FluxImagePipeline.from_pretrained( torch_dtype=torch.bfloat16, device="cuda", model_configs=[ ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="flux1-dev.safetensors"), ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder/model.safetensors"), ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder_2/"), ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="ae.safetensors"), ModelConfig(model_id="ByteDance/InfiniteYou", origin_file_pattern="infu_flux_v1.0/aes_stage2/image_proj_model.bin"), ModelConfig(model_id="ByteDance/InfiniteYou", origin_file_pattern="infu_flux_v1.0/aes_stage2/InfuseNetModel/*.safetensors"), ], ) state_dict = load_state_dict("models/train/FLUX.1-dev-InfiniteYou_full/epoch-0.safetensors") state_dict_projector = {i.replace("image_proj_model.", ""): state_dict[i] for i in state_dict if i.startswith("image_proj_model.")} pipe.image_proj_model.load_state_dict(state_dict_projector) state_dict_controlnet = {i.replace("controlnet.models.0.", ""): state_dict[i] for i in state_dict if i.startswith("controlnet.models.0.")} pipe.controlnet.models[0].load_state_dict(state_dict_controlnet) image = pipe( prompt="a man with a red hat", controlnet_inputs=[ControlNetInput( image=Image.open("data/example_image_dataset/infiniteyou/image_1.jpg"), )], height=1024, width=1024, seed=0, rand_device="cuda", ) image.save("image_FLUX.1-dev-InfiniteYou_full.jpg")