from PIL import Image import torch from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig pipe = QwenImagePipeline.from_pretrained( torch_dtype=torch.bfloat16, device="cuda", model_configs=[ ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"), ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"), ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"), ], tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"), ) pipe.load_lora(pipe.dit, "models/train/Qwen-Image-In-Context-Control-Union_lora/epoch-4.safetensors") image = Image.open("data/example_image_dataset/canny/image_1.jpg").resize((1024, 1024)) prompt = "Context_Control. a dog" image = pipe(prompt=prompt, seed=0, context_image=image, height=1024, width=1024) image.save("image_context.jpg")