import torch, os, json from diffsynth import load_state_dict from diffsynth.pipelines.wan_video_new import WanVideoPipeline, ModelConfig from diffsynth.trainers.utils import DiffusionTrainingModule, ModelLogger, launch_training_task, wan_parser from diffsynth.trainers.unified_dataset import UnifiedDataset, LoadVideo, LoadAudio, ImageCropAndResize, ToAbsolutePath os.environ["TOKENIZERS_PARALLELISM"] = "false" class WanTrainingModule(DiffusionTrainingModule): def __init__( self, model_paths=None, model_id_with_origin_paths=None, audio_processor_config=None, trainable_models=None, lora_base_model=None, lora_target_modules="q,k,v,o,ffn.0,ffn.2", lora_rank=32, lora_checkpoint=None, use_gradient_checkpointing=True, use_gradient_checkpointing_offload=False, extra_inputs=None, max_timestep_boundary=1.0, min_timestep_boundary=0.0, ): super().__init__() # Load models model_configs = self.parse_model_configs(model_paths, model_id_with_origin_paths, enable_fp8_training=False) if audio_processor_config is not None: audio_processor_config = ModelConfig(model_id=audio_processor_config.split(":")[0], origin_file_pattern=audio_processor_config.split(":")[1]) self.pipe = WanVideoPipeline.from_pretrained(torch_dtype=torch.bfloat16, device="cpu", model_configs=model_configs, audio_processor_config=audio_processor_config) # Training mode self.switch_pipe_to_training_mode( self.pipe, trainable_models, lora_base_model, lora_target_modules, lora_rank, lora_checkpoint=lora_checkpoint, enable_fp8_training=False, ) # Store other configs self.use_gradient_checkpointing = use_gradient_checkpointing self.use_gradient_checkpointing_offload = use_gradient_checkpointing_offload self.extra_inputs = extra_inputs.split(",") if extra_inputs is not None else [] self.max_timestep_boundary = max_timestep_boundary self.min_timestep_boundary = min_timestep_boundary def forward_preprocess(self, data): # CFG-sensitive parameters inputs_posi = {"prompt": data["prompt"]} inputs_nega = {} # CFG-unsensitive parameters inputs_shared = { # Assume you are using this pipeline for inference, # please fill in the input parameters. "input_video": data["video"], "height": data["video"][0].size[1], "width": data["video"][0].size[0], "num_frames": len(data["video"]), # Please do not modify the following parameters # unless you clearly know what this will cause. "cfg_scale": 1, "tiled": False, "rand_device": self.pipe.device, "use_gradient_checkpointing": self.use_gradient_checkpointing, "use_gradient_checkpointing_offload": self.use_gradient_checkpointing_offload, "cfg_merge": False, "vace_scale": 1, "max_timestep_boundary": self.max_timestep_boundary, "min_timestep_boundary": self.min_timestep_boundary, } # Extra inputs for extra_input in self.extra_inputs: if extra_input == "input_image": inputs_shared["input_image"] = data["video"][0] elif extra_input == "end_image": inputs_shared["end_image"] = data["video"][-1] elif extra_input == "reference_image" or extra_input == "vace_reference_image": inputs_shared[extra_input] = data[extra_input][0] else: inputs_shared[extra_input] = data[extra_input] # Pipeline units will automatically process the input parameters. for unit in self.pipe.units: inputs_shared, inputs_posi, inputs_nega = self.pipe.unit_runner(unit, self.pipe, inputs_shared, inputs_posi, inputs_nega) return {**inputs_shared, **inputs_posi} def forward(self, data, inputs=None): if inputs is None: inputs = self.forward_preprocess(data) models = {name: getattr(self.pipe, name) for name in self.pipe.in_iteration_models} loss = self.pipe.training_loss(**models, **inputs) return loss if __name__ == "__main__": parser = wan_parser() args = parser.parse_args() dataset = UnifiedDataset( base_path=args.dataset_base_path, metadata_path=args.dataset_metadata_path, repeat=args.dataset_repeat, data_file_keys=args.data_file_keys.split(","), main_data_operator=UnifiedDataset.default_video_operator( base_path=args.dataset_base_path, max_pixels=args.max_pixels, height=args.height, width=args.width, height_division_factor=16, width_division_factor=16, num_frames=args.num_frames, time_division_factor=4, time_division_remainder=1, ), special_operator_map={ "animate_face_video": ToAbsolutePath(args.dataset_base_path) >> LoadVideo(args.num_frames, 4, 1, frame_processor=ImageCropAndResize(512, 512, None, 16, 16)), "input_audio": ToAbsolutePath(args.dataset_base_path) >> LoadAudio(sr=16000), } ) model = WanTrainingModule( model_paths=args.model_paths, model_id_with_origin_paths=args.model_id_with_origin_paths, audio_processor_config=args.audio_processor_config, trainable_models=args.trainable_models, lora_base_model=args.lora_base_model, lora_target_modules=args.lora_target_modules, lora_rank=args.lora_rank, lora_checkpoint=args.lora_checkpoint, use_gradient_checkpointing_offload=args.use_gradient_checkpointing_offload, extra_inputs=args.extra_inputs, max_timestep_boundary=args.max_timestep_boundary, min_timestep_boundary=args.min_timestep_boundary, ) model_logger = ModelLogger( args.output_path, remove_prefix_in_ckpt=args.remove_prefix_in_ckpt ) launch_training_task(dataset, model, model_logger, args=args)