medmekk's picture
medmekk HF Staff
Update Builds
6d5dee5
"""
Copyright (c) 2024 by SageAttention team.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import torch
import triton
import triton.language as tl
@triton.jit
def quant_query_per_thread_int8_kernel(Input, Output, Scale, L,
stride_iz, stride_ih, stride_in,
stride_oz, stride_oh, stride_on,
stride_sz, stride_sh,
C: tl.constexpr, BLK: tl.constexpr):
off_blk = tl.program_id(0) // 8
off_tld = tl.program_id(0) % 8
off_h = tl.program_id(1)
off_b = tl.program_id(2)
offs_n = off_blk * BLK + tl.arange(0, BLK // 8) * 8 + off_tld
offs_k = tl.arange(0, C)
input_ptrs = Input + off_b * stride_iz + off_h * stride_ih + offs_n[:, None] * stride_in + offs_k[None, :]
output_ptrs = Output + off_b * stride_oz + off_h * stride_oh + offs_n[:, None] * stride_on + offs_k[None, :]
scale_ptrs = Scale + off_b * stride_sz + off_h * stride_sh + off_blk * 8 + off_tld
x = tl.load(input_ptrs, mask=offs_n[:, None] < L)
x = x.to(tl.float32)
scale = tl.max(tl.abs(x)) / 127. + 0.0000001
x_int8 = x / scale
x_int8 += 0.5 * tl.where(x_int8 >= 0, 1, -1)
x_int8 = x_int8.to(tl.int8)
tl.store(output_ptrs, x_int8, mask=offs_n[:, None] < L)
tl.store(scale_ptrs, scale)
@triton.jit
def quant_key_per_thread_int8_kernel(Input, Output, Scale, L,
stride_iz, stride_ih, stride_in,
stride_oz, stride_oh, stride_on,
stride_sz, stride_sh,
C: tl.constexpr, BLK: tl.constexpr):
off_blk = tl.program_id(0) // 4
off_tld = tl.program_id(0) % 4
off_h = tl.program_id(1)
off_b = tl.program_id(2)
# offs_n = off_blk * BLK + tl.cat(tl.arange(0, BLK // 8) * 8, tl.arange(0, BLK // 8) * 8 + 1, True) + off_tld * 2
# offs_k = tl.arange(0, C)
# input_ptrs = Input + off_b * stride_iz + off_h * stride_ih + offs_n[:, None] * stride_in + offs_k[None, :]
# output_ptrs = Output + off_b * stride_oz + off_h * stride_oh + offs_n[:, None] * stride_on + offs_k[None, :]
# scale_ptrs = Scale + off_b * stride_sz + off_h * stride_sh + off_blk * 4 + off_tld
# x = tl.load(input_ptrs, mask=offs_n[:, None] < L)
# x = x.to(tl.float32)
# scale = tl.max(tl.abs(x)) / 127. + 0.0000001
# x_int8 = x / scale
# x_int8 += 0.5 * tl.where(x_int8 >= 0, 1, -1)
# x_int8 = x_int8.to(tl.int8)
# tl.store(output_ptrs, x_int8, mask=offs_n[:, None] < L)
# tl.store(scale_ptrs, scale)
offs_n0 = off_blk * BLK + tl.arange(0, BLK // 8) * 8 + off_tld * 2
offs_n1 = off_blk * BLK + tl.arange(0, BLK // 8) * 8 + off_tld * 2 + 1
offs_k = tl.arange(0, C)
input_ptrs0 = Input + off_b * stride_iz + off_h * stride_ih + offs_n0[:, None] * stride_in + offs_k[None, :]
input_ptrs1 = Input + off_b * stride_iz + off_h * stride_ih + offs_n1[:, None] * stride_in + offs_k[None, :]
output_ptrs0 = Output + off_b * stride_oz + off_h * stride_oh + offs_n0[:, None] * stride_on + offs_k[None, :]
output_ptrs1 = Output + off_b * stride_oz + off_h * stride_oh + offs_n1[:, None] * stride_on + offs_k[None, :]
scale_ptrs = Scale + off_b * stride_sz + off_h * stride_sh + off_blk * 4 + off_tld
x0 = tl.load(input_ptrs0, mask=offs_n0[:, None] < L)
x1 = tl.load(input_ptrs1, mask=offs_n1[:, None] < L)
x0 = x0.to(tl.float32)
x1 = x1.to(tl.float32)
scale = max(tl.max(tl.abs(x0)), tl.max(tl.abs(x1))) / 127. + 0.0000001
x0_int8 = x0 / scale
x1_int8 = x1 / scale
x0_int8 += 0.5 * tl.where(x0_int8 >= 0, 1, -1)
x1_int8 += 0.5 * tl.where(x1_int8 >= 0, 1, -1)
x0_int8 = x0_int8.to(tl.int8)
x1_int8 = x1_int8.to(tl.int8)
tl.store(output_ptrs0, x0_int8, mask=offs_n0[:, None] < L)
tl.store(output_ptrs1, x1_int8, mask=offs_n1[:, None] < L)
tl.store(scale_ptrs, scale)
@triton.jit
def quant_query_per_thread_int4_kernel(Input, Output, Scale, L,
stride_iz, stride_ih, stride_in,
stride_oz, stride_oh, stride_on,
stride_sz, stride_sh,
C: tl.constexpr, BLK: tl.constexpr):
off_blk = tl.program_id(0) // 8
off_tld = tl.program_id(0) % 8
off_h = tl.program_id(1)
off_b = tl.program_id(2)
offs_n = off_blk * BLK + tl.arange(0, BLK // 8) * 8 + off_tld
offs_k = tl.arange(0, C)
input_ptrs = Input + off_b * stride_iz + off_h * stride_ih + offs_n[:, None] * stride_in + offs_k[None, :]
output_ptrs = Output + off_b * stride_oz + off_h * stride_oh + offs_n[:, None] * stride_on + offs_k[None, :]
scale_ptrs = Scale + off_b * stride_sz + off_h * stride_sh + off_blk * 8 + off_tld
x = tl.load(input_ptrs, mask=offs_n[:, None] < L)
x = x.to(tl.float32)
scale = tl.max(tl.abs(x)) / 7. + 0.0000001
x_int8 = x / scale
x_int8 += 0.5 * tl.where(x_int8 >= 0, 1, -1)
x_int8 = x_int8.to(tl.int8)
tl.store(output_ptrs, x_int8, mask=offs_n[:, None] < L)
tl.store(scale_ptrs, scale)
@triton.jit
def quant_key_per_thread_int4_kernel(Input, Output, Scale, L,
stride_iz, stride_ih, stride_in,
stride_oz, stride_oh, stride_on,
stride_sz, stride_sh,
C: tl.constexpr, BLK: tl.constexpr):
off_blk = tl.program_id(0) // 4
off_tld = tl.program_id(0) % 4
off_h = tl.program_id(1)
off_b = tl.program_id(2)
offs_n = off_blk * BLK + tl.cat(tl.arange(0, BLK // 8) * 8, tl.arange(0, BLK // 8) * 8 + 1, True) + off_tld * 2
offs_k = tl.arange(0, C)
input_ptrs = Input + off_b * stride_iz + off_h * stride_ih + offs_n[:, None] * stride_in + offs_k[None, :]
output_ptrs = Output + off_b * stride_oz + off_h * stride_oh + offs_n[:, None] * stride_on + offs_k[None, :]
scale_ptrs = Scale + off_b * stride_sz + off_h * stride_sh + off_blk * 4 + off_tld
x = tl.load(input_ptrs, mask=offs_n[:, None] < L)
x = x.to(tl.float32)
scale = tl.max(tl.abs(x)) / 7. + 0.0000001
x_int8 = x / scale
x_int8 += 0.5 * tl.where(x_int8 >= 0, 1, -1)
x_int8 = x_int8.to(tl.int8)
tl.store(output_ptrs, x_int8, mask=offs_n[:, None] < L)
tl.store(scale_ptrs, scale)
def per_thread_int8(q, k, km=None, BLKQ=128, WARPQ=32, BLKK=64, WARPK=64, sm_scale=None, tensor_layout="HND"):
q_int8 = torch.empty(q.shape, dtype=torch.int8, device=q.device)
k_int8 = torch.empty(k.shape, dtype=torch.int8, device=k.device)
if km is not None:
k = k - km
if tensor_layout == "HND":
b, h_qo, qo_len, head_dim = q.shape
_, h_kv, kv_len, _ = k.shape
stride_bz_q, stride_h_q, stride_seq_q = q.stride(0), q.stride(1), q.stride(2)
stride_bz_qo, stride_h_qo, stride_seq_qo = q_int8.stride(0), q_int8.stride(1), q_int8.stride(2)
stride_bz_k, stride_h_k, stride_seq_k = k.stride(0), k.stride(1), k.stride(2)
stride_bz_ko, stride_h_ko, stride_seq_ko = k_int8.stride(0), k_int8.stride(1), k_int8.stride(2)
elif tensor_layout == "NHD":
b, qo_len, h_qo, head_dim = q.shape
_, kv_len, h_kv, _ = k.shape
stride_bz_q, stride_h_q, stride_seq_q = q.stride(0), q.stride(2), q.stride(1)
stride_bz_qo, stride_h_qo, stride_seq_qo = q_int8.stride(0), q_int8.stride(2), q_int8.stride(1)
stride_bz_k, stride_h_k, stride_seq_k = k.stride(0), k.stride(2), k.stride(1)
stride_bz_ko, stride_h_ko, stride_seq_ko = k_int8.stride(0), k_int8.stride(2), k_int8.stride(1)
else:
raise ValueError(f"Unknown tensor layout: {tensor_layout}")
q_scale = torch.empty((b, h_qo, (qo_len + BLKQ - 1) // BLKQ * (BLKQ // WARPQ) * 8), device=q.device, dtype=torch.float32)
k_scale = torch.empty((b, h_kv, (kv_len + BLKK - 1) // BLKK * (BLKK // WARPK) * 4), device=q.device, dtype=torch.float32)
if sm_scale is None:
sm_scale = head_dim**-0.5
grid = ((qo_len + BLKQ - 1) // BLKQ * (BLKQ // WARPQ) * 8, h_qo, b)
quant_query_per_thread_int8_kernel[grid](
q, q_int8, q_scale, qo_len,
stride_bz_q, stride_h_q, stride_seq_q,
stride_bz_qo, stride_h_qo, stride_seq_qo,
q_scale.stride(0), q_scale.stride(1),
C=head_dim, BLK=WARPQ
)
grid = ((kv_len + BLKK - 1) // BLKK * (BLKK // WARPK) * 4, h_kv, b)
quant_key_per_thread_int8_kernel[grid](
k, k_int8, k_scale, kv_len,
stride_bz_k, stride_h_k, stride_seq_k,
stride_bz_ko, stride_h_ko, stride_seq_ko,
k_scale.stride(0), k_scale.stride(1),
C=head_dim, BLK=WARPK
)
return q_int8, q_scale, k_int8, k_scale