Papers
arxiv:2504.03289

RWKVTTS: Yet another TTS based on RWKV-7

Published on Apr 4
Authors:

Abstract

RWKV-7, an RNN-based architecture, outperforms transformer models in TTS by balancing computational efficiency and high-quality speech synthesis.

AI-generated summary

Human-AI interaction thrives on intuitive and efficient interfaces, among which voice stands out as a particularly natural and accessible modality. Recent advancements in transformer-based text-to-speech (TTS) systems, such as Fish-Speech, CosyVoice, and MegaTTS 3, have delivered remarkable improvements in quality and realism, driving a significant evolution in the TTS domain. In this paper, we introduce RWKV-7 peng2025rwkv, a cutting-edge RNN-based architecture tailored for TTS applications. Unlike traditional transformer models, RWKV-7 leverages the strengths of recurrent neural networks to achieve greater computational efficiency and scalability, while maintaining high-quality output. Our comprehensive benchmarks demonstrate that RWKV-7 outperforms transformer-based models across multiple key metrics, including synthesis speed, naturalness of speech, and resource efficiency. Furthermore, we explore its adaptability to diverse linguistic contexts and low-resource environments, showcasing its potential to democratize TTS technology. These findings position RWKV-7 as a powerful and innovative alternative, paving the way for more accessible and versatile voice synthesis solutions in real-world applications.Our code and weights are https://github.com/yynil/RWKVTTS, https://huggingface.co/spaces/RWKV-Red-Team

Community

DIGITAL COMPUTERS
There are two fundamentally different types of computers: analog and digital. In current usage, the term "computer" usually refers to high-speed digital computers. These computers are playing an increasing role in all branches of the economy.
Digital computers are based on manipulating discrete binary digits (1s and 0s). They are generally more effective than analog computers for four principal reasons: they are faster; they are not so susceptible to signal interference; they can transfer huge data bases more accurately; and their coded binary data are easier to store and retrieve than the analog signals.
For all their apparent complexity, digital computers are considered to be simple machines. Digital computers are able to recognize only two states in each of its millions of switches, "on" or "off", or high voltage or low voltage. By assigning binary numbers to there states, 1 for "on" and 0 for "off", and linking many switches together, a computer can represent any type of data from numbers to letters and musical notes. It is this process of recognizing signals that is known as digitization. The real power of a computer depends on the speed with which it checks switches per second. The more switches a computer checks in each cycle, the more data it can recognize at one time and the faster it can operate, each switch being called a binary digit or bit.
A digital computer is a complex system of four functionally different elements: 1) the central processing unit (CPU), 2) input devices, 3) memory-storage devices called disk drives, 4) output devices. These physical parts and all their physical components are called hardware.
The power of computers greatly on the characteristics of memory-storage devices. Most digital computers store data both internally, in what is called main memory, and externally, on auxiliary storage units. As a computer processes data and instructions, it temporarily stores information internally on special memory microchips. Auxiliary storage units supplement the main memory when programmes are too large and they also offer a more reliable method for storing data. There exist different kinds of auxiliary storage devices, removable magnetic disks being the most widely used. They can store up to 100 megabytes of data on one disk, a byte being known as the basic unit of data storage.
Output devices let the user see the results of the computer's data processing. Being the most commonly used output device,the monitor accepts video signals from a computer and shows different kinds of information such as text, formulas and graphics on its screen. With the help of various printers information stored in one of the computer's memory systems can be easily printed on paper in a desired number of copies.
Programmes, also called software, are detailed sequences of instructions that direct the computer hardware to perform useful operations. Due to a computer's operating system hardware and software systems can work simultaneously. An operating system consists of a number of programmes coordinating operations, translating the data from different input and output devices, regulating data storage in memory, transferring tasks to different processors, and providing functions that help programmers to write software. In large corporations software is often written by groups of experienced programmers, each person focusing on a specific aspect of the total project.

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2504.03289 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2504.03289 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2504.03289 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.