1 WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets for hyperspectral image classification Classification is an important aspect of hyperspectral images processing and application. At present, the researchers mostly use the classic airborne hyperspectral imagery as the benchmark dataset. However, existing datasets suffer from three bottlenecks: (1) low spatial resolution; (2) low labeled pixels proportion; (3) low degree of subclasses distinction. In this paper, a new benchmark dataset named the Wuhan UAV-borne hyperspectral image (WHU-Hi) dataset was built for hyperspectral image classification. The WHU-Hi dataset with a high spectral resolution (nm level) and a very high spatial resolution (cm level), which we refer to here as H2 imager. Besides, the WHU-Hi dataset has a higher pixel labeling ratio and finer subclasses. Some start-of-art hyperspectral image classification methods benchmarked the WHU-Hi dataset, and the experimental results show that WHU-Hi is a challenging dataset. We hope WHU-Hi dataset can become a strong benchmark to accelerate future research. 4 authors · Dec 27, 2020
- LoLA-SpecViT: Local Attention SwiGLU Vision Transformer with LoRA for Hyperspectral Imaging Hyperspectral image classification remains a challenging task due to the high dimensionality of spectral data, significant inter-band redundancy, and the limited availability of annotated samples. While recent transformer-based models have improved the global modeling of spectral-spatial dependencies, their scalability and adaptability under label-scarce conditions remain limited. In this work, we propose LoLA-SpecViT(Low-rank adaptation Local Attention Spectral Vision Transformer), a lightweight spectral vision transformer that addresses these limitations through a parameter-efficient architecture tailored to the unique characteristics of hyperspectral imagery. Our model combines a 3D convolutional spectral front-end with local window-based self-attention, enhancing both spectral feature extraction and spatial consistency while reducing computational complexity. To further improve adaptability, we integrate low-rank adaptation (LoRA) into attention and projection layers, enabling fine-tuning with over 80\% fewer trainable parameters. A novel cyclical learning rate scheduler modulates LoRA adaptation strength during training, improving convergence and generalisation. Extensive experiments on three benchmark datasets WHU-Hi LongKou, WHU-Hi HongHu, and Salinas demonstrate that LoLA-SpecViT consistently outperforms state-of-the-art baselines, achieving up to 99.91\% accuracy with substantially fewer parameters and enhanced robustness under low-label regimes. The proposed framework provides a scalable and generalizable solution for real-world HSI applications in agriculture, environmental monitoring, and remote sensing analytics. Our code is available in the following https://github.com/FadiZidiDz/LoLA-SpecViT{GitHub Repository}. 7 authors · Jun 21