new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 16

CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling

The simulation of large-scale systems with complex electron interactions remains one of the greatest challenges for the atomistic modeling of materials. Although classical force fields often fail to describe the coupling between electronic states and ionic rearrangements, the more accurate ab-initio molecular dynamics suffers from computational complexity that prevents long-time and large-scale simulations, which are essential to study many technologically relevant phenomena, such as reactions, ion migrations, phase transformations, and degradation. In this work, we present the Crystal Hamiltonian Graph neural Network (CHGNet) as a novel machine-learning interatomic potential (MLIP), using a graph-neural-network-based force field to model a universal potential energy surface. CHGNet is pretrained on the energies, forces, stresses, and magnetic moments from the Materials Project Trajectory Dataset, which consists of over 10 years of density functional theory static and relaxation trajectories of sim 1.5 million inorganic structures. The explicit inclusion of magnetic moments enables CHGNet to learn and accurately represent the orbital occupancy of electrons, enhancing its capability to describe both atomic and electronic degrees of freedom. We demonstrate several applications of CHGNet in solid-state materials, including charge-informed molecular dynamics in Li_xMnO_2, the finite temperature phase diagram for Li_xFePO_4 and Li diffusion in garnet conductors. We critically analyze the significance of including charge information for capturing appropriate chemistry, and we provide new insights into ionic systems with additional electronic degrees of freedom that can not be observed by previous MLIPs.

  • 7 authors
·
Feb 27, 2023

Scene as Occupancy

Human driver can easily describe the complex traffic scene by visual system. Such an ability of precise perception is essential for driver's planning. To achieve this, a geometry-aware representation that quantizes the physical 3D scene into structured grid map with semantic labels per cell, termed as 3D Occupancy, would be desirable. Compared to the form of bounding box, a key insight behind occupancy is that it could capture the fine-grained details of critical obstacles in the scene, and thereby facilitate subsequent tasks. Prior or concurrent literature mainly concentrate on a single scene completion task, where we might argue that the potential of this occupancy representation might obsess broader impact. In this paper, we propose OccNet, a multi-view vision-centric pipeline with a cascade and temporal voxel decoder to reconstruct 3D occupancy. At the core of OccNet is a general occupancy embedding to represent 3D physical world. Such a descriptor could be applied towards a wide span of driving tasks, including detection, segmentation and planning. To validate the effectiveness of this new representation and our proposed algorithm, we propose OpenOcc, the first dense high-quality 3D occupancy benchmark built on top of nuScenes. Empirical experiments show that there are evident performance gain across multiple tasks, e.g., motion planning could witness a collision rate reduction by 15%-58%, demonstrating the superiority of our method.

  • 11 authors
·
Jun 5, 2023

Outward Migration of a Gas Accreting Planet: A Semi-Analytical Formula

Type II orbital migration is a key process to regulate the mass and semimajor axis distribution of exoplanetary giant planets. The conventional formula of type II migration generally predicts too rapid inward migration to reconcile with the observed pile-up of gas giant beyond 1 au. Analyzing the recent high-resolution hydrodynamical simulations by Li et al. (2024) and Pan et al. (2025) that show robust outward migration of a gas accreting planet, we here clarify the condition for the outward migration to occur and derive a general semi-analytical formula that can be applied for broad range of planet mass and disk conditions. The striking outward migration is caused by azimuthal asymmetry in corotation torque exerted from cicumplanetary disk regions (connecting to horseshoe flow) that is produced by the planetary gas accretion, while the conventional inward migration model is based on radial asymmetry in the torques from the circumstellar protoplanetry disk. We found that the azimuthal asymmetry dominates and the migration is outward, when the gap depth defined by the surface density reduction factor of 1/(1+K') is in the range of 0.03 lesssim K' lesssim 50. Using simple models with the new formula, we demonstrate that the outward migration plays an important role in shaping the mass and semimajor axis distribution of gas giants. The concurrent dependence of planets' accretion rate and migration direction on their masses and disk properties potentially reproduces the observed pile-up of exoplanetary gas giants beyond 1 au, although more detailed planet population synthesis calculations are needed in the future.

  • 5 authors
·
Nov 28