- Sequence Tagging with Contextual and Non-Contextual Subword Representations: A Multilingual Evaluation Pretrained contextual and non-contextual subword embeddings have become available in over 250 languages, allowing massively multilingual NLP. However, while there is no dearth of pretrained embeddings, the distinct lack of systematic evaluations makes it difficult for practitioners to choose between them. In this work, we conduct an extensive evaluation comparing non-contextual subword embeddings, namely FastText and BPEmb, and a contextual representation method, namely BERT, on multilingual named entity recognition and part-of-speech tagging. We find that overall, a combination of BERT, BPEmb, and character representations works best across languages and tasks. A more detailed analysis reveals different strengths and weaknesses: Multilingual BERT performs well in medium- to high-resource languages, but is outperformed by non-contextual subword embeddings in a low-resource setting. 2 authors · Jun 4, 2019
- Improving Sequence Tagging for Vietnamese Text Using Transformer-based Neural Models This paper describes our study on using mutilingual BERT embeddings and some new neural models for improving sequence tagging tasks for the Vietnamese language. We propose new model architectures and evaluate them extensively on two named entity recognition datasets of VLSP 2016 and VLSP 2018, and on two part-of-speech tagging datasets of VLSP 2010 and VLSP 2013. Our proposed models outperform existing methods and achieve new state-of-the-art results. In particular, we have pushed the accuracy of part-of-speech tagging to 95.40% on the VLSP 2010 corpus, to 96.77% on the VLSP 2013 corpus; and the F1 score of named entity recognition to 94.07% on the VLSP 2016 corpus, to 90.31% on the VLSP 2018 corpus. Our code and pre-trained models viBERT and vELECTRA are released as open source to facilitate adoption and further research. 3 authors · Jun 29, 2020
- Efficient Encoders for Streaming Sequence Tagging A naive application of state-of-the-art bidirectional encoders for streaming sequence tagging would require encoding each token from scratch for each new token in an incremental streaming input (like transcribed speech). The lack of re-usability of previous computation leads to a higher number of Floating Point Operations (or FLOPs) and higher number of unnecessary label flips. Increased FLOPs consequently lead to higher wall-clock time and increased label flipping leads to poorer streaming performance. In this work, we present a Hybrid Encoder with Adaptive Restart (HEAR) that addresses these issues while maintaining the performance of bidirectional encoders over the offline (or complete) inputs while improving performance on streaming (or incomplete) inputs. HEAR has a Hybrid unidirectional-bidirectional encoder architecture to perform sequence tagging, along with an Adaptive Restart Module (ARM) to selectively guide the restart of bidirectional portion of the encoder. Across four sequence tagging tasks, HEAR offers FLOP savings in streaming settings upto 71.1% and also outperforms bidirectional encoders for streaming predictions by upto +10% streaming exact match. 4 authors · Jan 22, 2023
- Active Learning for Sequence Tagging with Deep Pre-trained Models and Bayesian Uncertainty Estimates Annotating training data for sequence tagging of texts is usually very time-consuming. Recent advances in transfer learning for natural language processing in conjunction with active learning open the possibility to significantly reduce the necessary annotation budget. We are the first to thoroughly investigate this powerful combination for the sequence tagging task. We conduct an extensive empirical study of various Bayesian uncertainty estimation methods and Monte Carlo dropout options for deep pre-trained models in the active learning framework and find the best combinations for different types of models. Besides, we also demonstrate that to acquire instances during active learning, a full-size Transformer can be substituted with a distilled version, which yields better computational performance and reduces obstacles for applying deep active learning in practice. 10 authors · Jan 20, 2021
- Bidirectional LSTM-CRF Models for Sequence Tagging In this paper, we propose a variety of Long Short-Term Memory (LSTM) based models for sequence tagging. These models include LSTM networks, bidirectional LSTM (BI-LSTM) networks, LSTM with a Conditional Random Field (CRF) layer (LSTM-CRF) and bidirectional LSTM with a CRF layer (BI-LSTM-CRF). Our work is the first to apply a bidirectional LSTM CRF (denoted as BI-LSTM-CRF) model to NLP benchmark sequence tagging data sets. We show that the BI-LSTM-CRF model can efficiently use both past and future input features thanks to a bidirectional LSTM component. It can also use sentence level tag information thanks to a CRF layer. The BI-LSTM-CRF model can produce state of the art (or close to) accuracy on POS, chunking and NER data sets. In addition, it is robust and has less dependence on word embedding as compared to previous observations. 3 authors · Aug 9, 2015
- R2T: Rule-Encoded Loss Functions for Low-Resource Sequence Tagging We introduce the Rule-to-Tag (R2T) framework, a hybrid approach that integrates a multi-tiered system of linguistic rules directly into a neural network's training objective. R2T's novelty lies in its adaptive loss function, which includes a regularization term that teaches the model to handle out-of-vocabulary (OOV) words with principled uncertainty. We frame this work as a case study in a paradigm we call principled learning (PrL), where models are trained with explicit task constraints rather than on labeled examples alone. Our experiments on Zarma part-of-speech (POS) tagging show that the R2T-BiLSTM model, trained only on unlabeled text, achieves 98.2% accuracy, outperforming baselines like AfriBERTa fine-tuned on 300 labeled sentences. We further show that for more complex tasks like named entity recognition (NER), R2T serves as a powerful pre-training step; a model pre-trained with R2T and fine-tuned on just 50 labeled sentences outperformes a baseline trained on 300. 3 authors · Oct 11
- Sequence-to-Action: Grammatical Error Correction with Action Guided Sequence Generation The task of Grammatical Error Correction (GEC) has received remarkable attention with wide applications in Natural Language Processing (NLP) in recent years. While one of the key principles of GEC is to keep the correct parts unchanged and avoid over-correction, previous sequence-to-sequence (seq2seq) models generate results from scratch, which are not guaranteed to follow the original sentence structure and may suffer from the over-correction problem. In the meantime, the recently proposed sequence tagging models can overcome the over-correction problem by only generating edit operations, but are conditioned on human designed language-specific tagging labels. In this paper, we combine the pros and alleviate the cons of both models by proposing a novel Sequence-to-Action~(S2A) module. The S2A module jointly takes the source and target sentences as input, and is able to automatically generate a token-level action sequence before predicting each token, where each action is generated from three choices named SKIP, COPY and GENerate. Then the actions are fused with the basic seq2seq framework to provide final predictions. We conduct experiments on the benchmark datasets of both English and Chinese GEC tasks. Our model consistently outperforms the seq2seq baselines, while being able to significantly alleviate the over-correction problem as well as holding better generality and diversity in the generation results compared to the sequence tagging models. 7 authors · May 22, 2022
- Towards JointUD: Part-of-speech Tagging and Lemmatization using Recurrent Neural Networks This paper describes our submission to CoNLL 2018 UD Shared Task. We have extended an LSTM-based neural network designed for sequence tagging to additionally generate character-level sequences. The network was jointly trained to produce lemmas, part-of-speech tags and morphological features. Sentence segmentation, tokenization and dependency parsing were handled by UDPipe 1.2 baseline. The results demonstrate the viability of the proposed multitask architecture, although its performance still remains far from state-of-the-art. 3 authors · Sep 10, 2018
- Character-based Joint Segmentation and POS Tagging for Chinese using Bidirectional RNN-CRF We present a character-based model for joint segmentation and POS tagging for Chinese. The bidirectional RNN-CRF architecture for general sequence tagging is adapted and applied with novel vector representations of Chinese characters that capture rich contextual information and lower-than-character level features. The proposed model is extensively evaluated and compared with a state-of-the-art tagger respectively on CTB5, CTB9 and UD Chinese. The experimental results indicate that our model is accurate and robust across datasets in different sizes, genres and annotation schemes. We obtain state-of-the-art performance on CTB5, achieving 94.38 F1-score for joint segmentation and POS tagging. 4 authors · Apr 5, 2017
- Position-Aware Tagging for Aspect Sentiment Triplet Extraction Aspect Sentiment Triplet Extraction (ASTE) is the task of extracting the triplets of target entities, their associated sentiment, and opinion spans explaining the reason for the sentiment. Existing research efforts mostly solve this problem using pipeline approaches, which break the triplet extraction process into several stages. Our observation is that the three elements within a triplet are highly related to each other, and this motivates us to build a joint model to extract such triplets using a sequence tagging approach. However, how to effectively design a tagging approach to extract the triplets that can capture the rich interactions among the elements is a challenging research question. In this work, we propose the first end-to-end model with a novel position-aware tagging scheme that is capable of jointly extracting the triplets. Our experimental results on several existing datasets show that jointly capturing elements in the triplet using our approach leads to improved performance over the existing approaches. We also conducted extensive experiments to investigate the model effectiveness and robustness. 4 authors · Oct 6, 2020
- LiteMuL: A Lightweight On-Device Sequence Tagger using Multi-task Learning Named entity detection and Parts-of-speech tagging are the key tasks for many NLP applications. Although the current state of the art methods achieved near perfection for long, formal, structured text there are hindrances in deploying these models on memory-constrained devices such as mobile phones. Furthermore, the performance of these models is degraded when they encounter short, informal, and casual conversations. To overcome these difficulties, we present LiteMuL - a lightweight on-device sequence tagger that can efficiently process the user conversations using a Multi-Task Learning (MTL) approach. To the best of our knowledge, the proposed model is the first on-device MTL neural model for sequence tagging. Our LiteMuL model is about 2.39 MB in size and achieved an accuracy of 0.9433 (for NER), 0.9090 (for POS) on the CoNLL 2003 dataset. The proposed LiteMuL not only outperforms the current state of the art results but also surpasses the results of our proposed on-device task-specific models, with accuracy gains of up to 11% and model-size reduction by 50%-56%. Our model is competitive with other MTL approaches for NER and POS tasks while outshines them with a low memory footprint. We also evaluated our model on custom-curated user conversations and observed impressive results. 7 authors · Dec 15, 2020
- Automatic Metadata Extraction Incorporating Visual Features from Scanned Electronic Theses and Dissertations Electronic Theses and Dissertations (ETDs) contain domain knowledge that can be used for many digital library tasks, such as analyzing citation networks and predicting research trends. Automatic metadata extraction is important to build scalable digital library search engines. Most existing methods are designed for born-digital documents, so they often fail to extract metadata from scanned documents such as for ETDs. Traditional sequence tagging methods mainly rely on text-based features. In this paper, we propose a conditional random field (CRF) model that combines text-based and visual features. To verify the robustness of our model, we extended an existing corpus and created a new ground truth corpus consisting of 500 ETD cover pages with human validated metadata. Our experiments show that CRF with visual features outperformed both a heuristic and a CRF model with only text-based features. The proposed model achieved 81.3%-96% F1 measure on seven metadata fields. The data and source code are publicly available on Google Drive (https://tinyurl.com/y8kxzwrp) and a GitHub repository (https://github.com/lamps-lab/ETDMiner/tree/master/etd_crf), respectively. 5 authors · Jul 1, 2021
- Local Topology Measures of Contextual Language Model Latent Spaces With Applications to Dialogue Term Extraction A common approach for sequence tagging tasks based on contextual word representations is to train a machine learning classifier directly on these embedding vectors. This approach has two shortcomings. First, such methods consider single input sequences in isolation and are unable to put an individual embedding vector in relation to vectors outside the current local context of use. Second, the high performance of these models relies on fine-tuning the embedding model in conjunction with the classifier, which may not always be feasible due to the size or inaccessibility of the underlying feature-generation model. It is thus desirable, given a collection of embedding vectors of a corpus, i.e., a datastore, to find features of each vector that describe its relation to other, similar vectors in the datastore. With this in mind, we introduce complexity measures of the local topology of the latent space of a contextual language model with respect to a given datastore. The effectiveness of our features is demonstrated through their application to dialogue term extraction. Our work continues a line of research that explores the manifold hypothesis for word embeddings, demonstrating that local structure in the space carved out by word embeddings can be exploited to infer semantic properties. 8 authors · Aug 7, 2024
- TAGPRIME: A Unified Framework for Relational Structure Extraction Many tasks in natural language processing require the extraction of relationship information for a given condition, such as event argument extraction, relation extraction, and task-oriented semantic parsing. Recent works usually propose sophisticated models for each task independently and pay less attention to the commonality of these tasks and to have a unified framework for all the tasks. In this work, we propose to take a unified view of all these tasks and introduce TAGPRIME to address relational structure extraction problems. TAGPRIME is a sequence tagging model that appends priming words about the information of the given condition (such as an event trigger) to the input text. With the self-attention mechanism in pre-trained language models, the priming words make the output contextualized representations contain more information about the given condition, and hence become more suitable for extracting specific relationships for the condition. Extensive experiments and analyses on three different tasks that cover ten datasets across five different languages demonstrate the generality and effectiveness of TAGPRIME. 7 authors · May 25, 2022
- TAT-QA: A Question Answering Benchmark on a Hybrid of Tabular and Textual Content in Finance Hybrid data combining both tabular and textual content (e.g., financial reports) are quite pervasive in the real world. However, Question Answering (QA) over such hybrid data is largely neglected in existing research. In this work, we extract samples from real financial reports to build a new large-scale QA dataset containing both Tabular And Textual data, named TAT-QA, where numerical reasoning is usually required to infer the answer, such as addition, subtraction, multiplication, division, counting, comparison/sorting, and the compositions. We further propose a novel QA model termed TAGOP, which is capable of reasoning over both tables and text. It adopts sequence tagging to extract relevant cells from the table along with relevant spans from the text to infer their semantics, and then applies symbolic reasoning over them with a set of aggregation operators to arrive at the final answer. TAGOPachieves 58.0% inF1, which is an 11.1% absolute increase over the previous best baseline model, according to our experiments on TAT-QA. But this result still lags far behind performance of expert human, i.e.90.8% in F1. It is demonstrated that our TAT-QA is very challenging and can serve as a benchmark for training and testing powerful QA models that address hybrid form data. 8 authors · May 17, 2021
- Enhancing Text Editing for Grammatical Error Correction: Arabic as a Case Study Text editing frames grammatical error correction (GEC) as a sequence tagging problem, where edit tags are assigned to input tokens, and applying these edits results in the corrected text. This approach has gained attention for its efficiency and interpretability. However, while extensively explored for English, text editing remains largely underexplored for morphologically rich languages like Arabic. In this paper, we introduce a text editing approach that derives edit tags directly from data, eliminating the need for language-specific edits. We demonstrate its effectiveness on Arabic, a diglossic and morphologically rich language, and investigate the impact of different edit representations on model performance. Our approach achieves SOTA results on two Arabic GEC benchmarks and performs on par with SOTA on two others. Additionally, our models are over six times faster than existing Arabic GEC systems, making our approach more practical for real-world applications. Finally, we explore ensemble models, demonstrating how combining different models leads to further performance improvements. We make our code, data, and pretrained models publicly available. 2 authors · Mar 2
- Chinese Spelling Correction as Rephrasing Language Model This paper studies Chinese Spelling Correction (CSC), which aims to detect and correct the potential spelling errors in a given sentence. Current state-of-the-art methods regard CSC as a sequence tagging task and fine-tune BERT-based models on sentence pairs. However, we note a critical flaw in the process of tagging one character to another, that the correction is excessively conditioned on the error. This is opposite from human mindset, where individuals rephrase the complete sentence based on its semantics, rather than solely on the error patterns memorized before. Such a counter-intuitive learning process results in the bottleneck of generalizability and transferability of machine spelling correction. To address this, we propose Rephrasing Language Model (ReLM), where the model is trained to rephrase the entire sentence by infilling additional slots, instead of character-to-character tagging. This novel training paradigm achieves the new state-of-the-art results across fine-tuned and zero-shot CSC benchmarks, outperforming previous counterparts by a large margin. Our method also learns transferable language representation when CSC is jointly trained with other tasks. 3 authors · Aug 17, 2023
- WRENCH: A Comprehensive Benchmark for Weak Supervision Recent Weak Supervision (WS) approaches have had widespread success in easing the bottleneck of labeling training data for machine learning by synthesizing labels from multiple potentially noisy supervision sources. However, proper measurement and analysis of these approaches remain a challenge. First, datasets used in existing works are often private and/or custom, limiting standardization. Second, WS datasets with the same name and base data often vary in terms of the labels and weak supervision sources used, a significant "hidden" source of evaluation variance. Finally, WS studies often diverge in terms of the evaluation protocol and ablations used. To address these problems, we introduce a benchmark platform, WRENCH, for thorough and standardized evaluation of WS approaches. It consists of 22 varied real-world datasets for classification and sequence tagging; a range of real, synthetic, and procedurally-generated weak supervision sources; and a modular, extensible framework for WS evaluation, including implementations for popular WS methods. We use WRENCH to conduct extensive comparisons over more than 120 method variants to demonstrate its efficacy as a benchmark platform. The code is available at https://github.com/JieyuZ2/wrench. 7 authors · Sep 23, 2021
- PADA: Example-based Prompt Learning for on-the-fly Adaptation to Unseen Domains Natural Language Processing algorithms have made incredible progress, but they still struggle when applied to out-of-distribution examples. We address a challenging and underexplored version of this domain adaptation problem, where an algorithm is trained on several source domains, and then applied to examples from unseen domains that are unknown at training time. Particularly, no examples, labeled or unlabeled, or any other knowledge about the target domain are available to the algorithm at training time. We present PADA: An example-based autoregressive Prompt learning algorithm for on-the-fly Any-Domain Adaptation, based on the T5 language model. Given a test example, PADA first generates a unique prompt for it and then, conditioned on this prompt, labels the example with respect to the NLP prediction task. PADA is trained to generate a prompt which is a token sequence of unrestricted length, consisting of Domain Related Features (DRFs) that characterize each of the source domains. Intuitively, the generated prompt is a unique signature that maps the test example to a semantic space spanned by the source domains. In experiments with 3 tasks (text classification and sequence tagging), for a total of 14 multi-source adaptation scenarios, PADA substantially outperforms strong baselines. 3 authors · Feb 24, 2021
- SciBERT: A Pretrained Language Model for Scientific Text Obtaining large-scale annotated data for NLP tasks in the scientific domain is challenging and expensive. We release SciBERT, a pretrained language model based on BERT (Devlin et al., 2018) to address the lack of high-quality, large-scale labeled scientific data. SciBERT leverages unsupervised pretraining on a large multi-domain corpus of scientific publications to improve performance on downstream scientific NLP tasks. We evaluate on a suite of tasks including sequence tagging, sentence classification and dependency parsing, with datasets from a variety of scientific domains. We demonstrate statistically significant improvements over BERT and achieve new state-of-the-art results on several of these tasks. The code and pretrained models are available at https://github.com/allenai/scibert/. 3 authors · Mar 26, 2019
1 A Simple and Effective Model for Answering Multi-span Questions Models for reading comprehension (RC) commonly restrict their output space to the set of all single contiguous spans from the input, in order to alleviate the learning problem and avoid the need for a model that generates text explicitly. However, forcing an answer to be a single span can be restrictive, and some recent datasets also include multi-span questions, i.e., questions whose answer is a set of non-contiguous spans in the text. Naturally, models that return single spans cannot answer these questions. In this work, we propose a simple architecture for answering multi-span questions by casting the task as a sequence tagging problem, namely, predicting for each input token whether it should be part of the output or not. Our model substantially improves performance on span extraction questions from DROP and Quoref by 9.9 and 5.5 EM points respectively. 5 authors · Sep 29, 2019 1
- GECTurk: Grammatical Error Correction and Detection Dataset for Turkish Grammatical Error Detection and Correction (GEC) tools have proven useful for native speakers and second language learners. Developing such tools requires a large amount of parallel, annotated data, which is unavailable for most languages. Synthetic data generation is a common practice to overcome the scarcity of such data. However, it is not straightforward for morphologically rich languages like Turkish due to complex writing rules that require phonological, morphological, and syntactic information. In this work, we present a flexible and extensible synthetic data generation pipeline for Turkish covering more than 20 expert-curated grammar and spelling rules (a.k.a., writing rules) implemented through complex transformation functions. Using this pipeline, we derive 130,000 high-quality parallel sentences from professionally edited articles. Additionally, we create a more realistic test set by manually annotating a set of movie reviews. We implement three baselines formulating the task as i) neural machine translation, ii) sequence tagging, and iii) prefix tuning with a pretrained decoder-only model, achieving strong results. Furthermore, we perform exhaustive experiments on out-of-domain datasets to gain insights on the transferability and robustness of the proposed approaches. Our results suggest that our corpus, GECTurk, is high-quality and allows knowledge transfer for the out-of-domain setting. To encourage further research on Turkish GEC, we release our datasets, baseline models, and the synthetic data generation pipeline at https://github.com/GGLAB-KU/gecturk. 4 authors · Sep 20, 2023 1
- Is ChatGPT a General-Purpose Natural Language Processing Task Solver? Spurred by advancements in scale, large language models (LLMs) have demonstrated the ability to perform a variety of natural language processing (NLP) tasks zero-shot -- i.e., without adaptation on downstream data. Recently, the debut of ChatGPT has drawn a great deal of attention from the natural language processing (NLP) community due to the fact that it can generate high-quality responses to human input and self-correct previous mistakes based on subsequent conversations. However, it is not yet known whether ChatGPT can serve as a generalist model that can perform many NLP tasks zero-shot. In this work, we empirically analyze the zero-shot learning ability of ChatGPT by evaluating it on 20 popular NLP datasets covering 7 representative task categories. With extensive empirical studies, we demonstrate both the effectiveness and limitations of the current version of ChatGPT. We find that ChatGPT performs well on many tasks favoring reasoning capabilities (e.g., arithmetic reasoning) while it still faces challenges when solving specific tasks such as sequence tagging. We additionally provide in-depth analysis through qualitative case studies. 6 authors · Feb 8, 2023
2 Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks How well can NLP models generalize to a variety of unseen tasks when provided with task instructions? To address this question, we first introduce Super-NaturalInstructions, a benchmark of 1,616 diverse NLP tasks and their expert-written instructions. Our collection covers 76 distinct task types, including but not limited to classification, extraction, infilling, sequence tagging, text rewriting, and text composition. This large and diverse collection of tasks enables rigorous benchmarking of cross-task generalization under instructions -- training models to follow instructions on a subset of tasks and evaluating them on the remaining unseen ones. Furthermore, we build Tk-Instruct, a transformer model trained to follow a variety of in-context instructions (plain language task definitions or k-shot examples). Our experiments show that Tk-Instruct outperforms existing instruction-following models such as InstructGPT by over 9% on our benchmark despite being an order of magnitude smaller. We further analyze generalization as a function of various scaling parameters, such as the number of observed tasks, the number of instances per task, and model sizes. We hope our dataset and model facilitate future progress towards more general-purpose NLP models. 40 authors · Apr 15, 2022
1 Generative Judge for Evaluating Alignment The rapid development of Large Language Models (LLMs) has substantially expanded the range of tasks they can address. In the field of Natural Language Processing (NLP), researchers have shifted their focus from conventional NLP tasks (e.g., sequence tagging and parsing) towards tasks that revolve around aligning with human needs (e.g., brainstorming and email writing). This shift in task distribution imposes new requirements on evaluating these aligned models regarding generality (i.e., assessing performance across diverse scenarios), flexibility (i.e., examining under different protocols), and interpretability (i.e., scrutinizing models with explanations). In this paper, we propose a generative judge with 13B parameters, Auto-J, designed to address these challenges. Our model is trained on user queries and LLM-generated responses under massive real-world scenarios and accommodates diverse evaluation protocols (e.g., pairwise response comparison and single-response evaluation) with well-structured natural language critiques. To demonstrate the efficacy of our approach, we construct a new testbed covering 58 different scenarios. Experimentally, Auto-J outperforms a series of strong competitors, including both open-source and closed-source models, by a large margin. We also provide detailed analysis and case studies to further reveal the potential of our method and make a variety of resources public at https://github.com/GAIR-NLP/auto-j. 6 authors · Oct 9, 2023
1 CySecBERT: A Domain-Adapted Language Model for the Cybersecurity Domain The field of cybersecurity is evolving fast. Experts need to be informed about past, current and - in the best case - upcoming threats, because attacks are becoming more advanced, targets bigger and systems more complex. As this cannot be addressed manually, cybersecurity experts need to rely on machine learning techniques. In the texutual domain, pre-trained language models like BERT have shown to be helpful, by providing a good baseline for further fine-tuning. However, due to the domain-knowledge and many technical terms in cybersecurity general language models might miss the gist of textual information, hence doing more harm than good. For this reason, we create a high-quality dataset and present a language model specifically tailored to the cybersecurity domain, which can serve as a basic building block for cybersecurity systems that deal with natural language. The model is compared with other models based on 15 different domain-dependent extrinsic and intrinsic tasks as well as general tasks from the SuperGLUE benchmark. On the one hand, the results of the intrinsic tasks show that our model improves the internal representation space of words compared to the other models. On the other hand, the extrinsic, domain-dependent tasks, consisting of sequence tagging and classification, show that the model is best in specific application scenarios, in contrast to the others. Furthermore, we show that our approach against catastrophic forgetting works, as the model is able to retrieve the previously trained domain-independent knowledge. The used dataset and trained model are made publicly available 4 authors · Dec 6, 2022
- Benchmarking Arabic AI with Large Language Models With large Foundation Models (FMs), language technologies (AI in general) are entering a new paradigm: eliminating the need for developing large-scale task-specific datasets and supporting a variety of tasks through set-ups ranging from zero-shot to few-shot learning. However, understanding FMs capabilities requires a systematic benchmarking effort by comparing FMs performance with the state-of-the-art (SOTA) task-specific models. With that goal, past work focused on the English language and included a few efforts with multiple languages. Our study contributes to ongoing research by evaluating FMs performance for standard Arabic NLP and Speech processing, including a range of tasks from sequence tagging to content classification across diverse domains. We start with zero-shot learning using GPT-3.5-turbo, Whisper, and USM, addressing 33 unique tasks using 59 publicly available datasets resulting in 96 test setups. For a few tasks, FMs performs on par or exceeds the performance of the SOTA models but for the majority it under-performs. Given the importance of prompt for the FMs performance, we discuss our prompt strategies in detail and elaborate on our findings. Our future work on Arabic AI will explore few-shot prompting, expand the range of tasks, and investigate additional open-source models. 16 authors · May 24, 2023
- The Re-Label Method For Data-Centric Machine Learning In industry deep learning application, our manually labeled data has a certain number of noisy data. To solve this problem and achieve more than 90 score in dev dataset, we present a simple method to find the noisy data and re-label the noisy data by human, given the model predictions as references in human labeling. In this paper, we illustrate our idea for a broad set of deep learning tasks, includes classification, sequence tagging, object detection, sequence generation, click-through rate prediction. The dev dataset evaluation results and human evaluation results verify our idea. 1 authors · Feb 8, 2023
- Learning to Look Inside: Augmenting Token-Based Encoders with Character-Level Information Commonly-used transformer language models depend on a tokenization schema which sets an unchangeable subword vocabulary prior to pre-training, destined to be applied to all downstream tasks regardless of domain shift, novel word formations, or other sources of vocabulary mismatch. Recent work has shown that "token-free" models can be trained directly on characters or bytes, but training these models from scratch requires substantial computational resources, and this implies discarding the many domain-specific models that were trained on tokens. In this paper, we present XRayEmb, a method for retrofitting existing token-based models with character-level information. XRayEmb is composed of a character-level "encoder" that computes vector representations of character sequences, and a generative component that decodes from the internal representation to a character sequence. We show that incorporating XRayEmb's learned vectors into sequences of pre-trained token embeddings helps performance on both autoregressive and masked pre-trained transformer architectures and on both sequence-level and sequence tagging tasks, particularly on non-standard English text. 4 authors · Aug 1, 2021
- What to Pre-Train on? Efficient Intermediate Task Selection Intermediate task fine-tuning has been shown to culminate in large transfer gains across many NLP tasks. With an abundance of candidate datasets as well as pre-trained language models, it has become infeasible to run the cross-product of all combinations to find the best transfer setting. In this work we first establish that similar sequential fine-tuning gains can be achieved in adapter settings, and subsequently consolidate previously proposed methods that efficiently identify beneficial tasks for intermediate transfer learning. We experiment with a diverse set of 42 intermediate and 11 target English classification, multiple choice, question answering, and sequence tagging tasks. Our results show that efficient embedding based methods that rely solely on the respective datasets outperform computational expensive few-shot fine-tuning approaches. Our best methods achieve an average Regret@3 of less than 1% across all target tasks, demonstrating that we are able to efficiently identify the best datasets for intermediate training. 4 authors · Apr 16, 2021
3 BERT Rediscovers the Classical NLP Pipeline Pre-trained text encoders have rapidly advanced the state of the art on many NLP tasks. We focus on one such model, BERT, and aim to quantify where linguistic information is captured within the network. We find that the model represents the steps of the traditional NLP pipeline in an interpretable and localizable way, and that the regions responsible for each step appear in the expected sequence: POS tagging, parsing, NER, semantic roles, then coreference. Qualitative analysis reveals that the model can and often does adjust this pipeline dynamically, revising lower-level decisions on the basis of disambiguating information from higher-level representations. 3 authors · May 15, 2019
- Neural sequence labeling for Vietnamese POS Tagging and NER This paper presents a neural architecture for Vietnamese sequence labeling tasks including part-of-speech (POS) tagging and named entity recognition (NER). We applied the model described in lample-EtAl:2016:N16-1 that is a combination of bidirectional Long-Short Term Memory and Conditional Random Fields, which rely on two sources of information about words: character-based word representations learned from the supervised corpus and pre-trained word embeddings learned from other unannotated corpora. Experiments on benchmark datasets show that this work achieves state-of-the-art performances on both tasks - 93.52\% accuracy for POS tagging and 94.88\% F1 for NER. Our sourcecode is available at here. 3 authors · Nov 8, 2018
- Bringing Emerging Architectures to Sequence Labeling in NLP Pretrained Transformer encoders are the dominant approach to sequence labeling. While some alternative architectures-such as xLSTMs, structured state-space models, diffusion models, and adversarial learning-have shown promise in language modeling, few have been applied to sequence labeling, and mostly on flat or simplified tasks. We study how these architectures adapt across tagging tasks that vary in structural complexity, label space, and token dependencies, with evaluation spanning multiple languages. We find that the strong performance previously observed in simpler settings does not always generalize well across languages or datasets, nor does it extend to more complex structured tasks. 3 authors · Sep 30
- Yunshan Cup 2020: Overview of the Part-of-Speech Tagging Task for Low-resourced Languages The Yunshan Cup 2020 track focused on creating a framework for evaluating different methods of part-of-speech (POS). There were two tasks for this track: (1) POS tagging for the Indonesian language, and (2) POS tagging for the Lao tagging. The Indonesian dataset is comprised of 10000 sentences from Indonesian news within 29 tags. And the Lao dataset consists of 8000 sentences within 27 tags. 25 teams registered for the task. The methods of participants ranged from feature-based to neural networks using either classical machine learning techniques or ensemble methods. The best performing results achieve an accuracy of 95.82% for Indonesian and 93.03%, showing that neural sequence labeling models significantly outperform classic feature-based methods and rule-based methods. 6 authors · Apr 6, 2022
- Toward Interpretable Music Tagging with Self-Attention Self-attention is an attention mechanism that learns a representation by relating different positions in the sequence. The transformer, which is a sequence model solely based on self-attention, and its variants achieved state-of-the-art results in many natural language processing tasks. Since music composes its semantics based on the relations between components in sparse positions, adopting the self-attention mechanism to solve music information retrieval (MIR) problems can be beneficial. Hence, we propose a self-attention based deep sequence model for music tagging. The proposed architecture consists of shallow convolutional layers followed by stacked Transformer encoders. Compared to conventional approaches using fully convolutional or recurrent neural networks, our model is more interpretable while reporting competitive results. We validate the performance of our model with the MagnaTagATune and the Million Song Dataset. In addition, we demonstrate the interpretability of the proposed architecture with a heat map visualization. 3 authors · Jun 12, 2019
1 ToPro: Token-Level Prompt Decomposition for Cross-Lingual Sequence Labeling Tasks Prompt-based methods have been successfully applied to multilingual pretrained language models for zero-shot cross-lingual understanding. However, most previous studies primarily focused on sentence-level classification tasks, and only a few considered token-level labeling tasks such as Named Entity Recognition (NER) and Part-of-Speech (POS) tagging. In this paper, we propose Token-Level Prompt Decomposition (ToPro), which facilitates the prompt-based method for token-level sequence labeling tasks. The ToPro method decomposes an input sentence into single tokens and applies one prompt template to each token. Our experiments on multilingual NER and POS tagging datasets demonstrate that ToPro-based fine-tuning outperforms Vanilla fine-tuning and Prompt-Tuning in zero-shot cross-lingual transfer, especially for languages that are typologically different from the source language English. Our method also attains state-of-the-art performance when employed with the mT5 model. Besides, our exploratory study in multilingual large language models shows that ToPro performs much better than the current in-context learning method. Overall, the performance improvements show that ToPro could potentially serve as a novel and simple benchmarking method for sequence labeling tasks. 7 authors · Jan 29, 2024 1
- End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF State-of-the-art sequence labeling systems traditionally require large amounts of task-specific knowledge in the form of hand-crafted features and data pre-processing. In this paper, we introduce a novel neutral network architecture that benefits from both word- and character-level representations automatically, by using combination of bidirectional LSTM, CNN and CRF. Our system is truly end-to-end, requiring no feature engineering or data pre-processing, thus making it applicable to a wide range of sequence labeling tasks. We evaluate our system on two data sets for two sequence labeling tasks --- Penn Treebank WSJ corpus for part-of-speech (POS) tagging and CoNLL 2003 corpus for named entity recognition (NER). We obtain state-of-the-art performance on both the two data --- 97.55\% accuracy for POS tagging and 91.21\% F1 for NER. 2 authors · Mar 4, 2016
1 Zero Resource Cross-Lingual Part Of Speech Tagging Part of speech tagging in zero-resource settings can be an effective approach for low-resource languages when no labeled training data is available. Existing systems use two main techniques for POS tagging i.e. pretrained multilingual large language models(LLM) or project the source language labels into the zero resource target language and train a sequence labeling model on it. We explore the latter approach using the off-the-shelf alignment module and train a hidden Markov model(HMM) to predict the POS tags. We evaluate transfer learning setup with English as a source language and French, German, and Spanish as target languages for part-of-speech tagging. Our conclusion is that projected alignment data in zero-resource language can be beneficial to predict POS tags. 1 authors · Jan 11, 2024
1 LINGUIST: Language Model Instruction Tuning to Generate Annotated Utterances for Intent Classification and Slot Tagging We present LINGUIST, a method for generating annotated data for Intent Classification and Slot Tagging (IC+ST), via fine-tuning AlexaTM 5B, a 5-billion-parameter multilingual sequence-to-sequence (seq2seq) model, on a flexible instruction prompt. In a 10-shot novel intent setting for the SNIPS dataset, LINGUIST surpasses state-of-the-art approaches (Back-Translation and Example Extrapolation) by a wide margin, showing absolute improvement for the target intents of +1.9 points on IC Recall and +2.5 points on ST F1 Score. In the zero-shot cross-lingual setting of the mATIS++ dataset, LINGUIST out-performs a strong baseline of Machine Translation with Slot Alignment by +4.14 points absolute on ST F1 Score across 6 languages, while matching performance on IC. Finally, we verify our results on an internal large-scale multilingual dataset for conversational agent IC+ST and show significant improvements over a baseline which uses Back-Translation, Paraphrasing and Slot Catalog Resampling. To our knowledge, we are the first to demonstrate instruction fine-tuning of a large-scale seq2seq model to control the outputs of multilingual intent- and slot-labeled data generation. 5 authors · Sep 20, 2022
- Reading Order Matters: Information Extraction from Visually-rich Documents by Token Path Prediction Recent advances in multimodal pre-trained models have significantly improved information extraction from visually-rich documents (VrDs), in which named entity recognition (NER) is treated as a sequence-labeling task of predicting the BIO entity tags for tokens, following the typical setting of NLP. However, BIO-tagging scheme relies on the correct order of model inputs, which is not guaranteed in real-world NER on scanned VrDs where text are recognized and arranged by OCR systems. Such reading order issue hinders the accurate marking of entities by BIO-tagging scheme, making it impossible for sequence-labeling methods to predict correct named entities. To address the reading order issue, we introduce Token Path Prediction (TPP), a simple prediction head to predict entity mentions as token sequences within documents. Alternative to token classification, TPP models the document layout as a complete directed graph of tokens, and predicts token paths within the graph as entities. For better evaluation of VrD-NER systems, we also propose two revised benchmark datasets of NER on scanned documents which can reflect real-world scenarios. Experiment results demonstrate the effectiveness of our method, and suggest its potential to be a universal solution to various information extraction tasks on documents. 8 authors · Oct 17, 2023
- Joint Extraction of Entities and Relations Based on a Novel Decomposition Strategy Joint extraction of entities and relations aims to detect entity pairs along with their relations using a single model. Prior work typically solves this task in the extract-then-classify or unified labeling manner. However, these methods either suffer from the redundant entity pairs, or ignore the important inner structure in the process of extracting entities and relations. To address these limitations, in this paper, we first decompose the joint extraction task into two interrelated subtasks, namely HE extraction and TER extraction. The former subtask is to distinguish all head-entities that may be involved with target relations, and the latter is to identify corresponding tail-entities and relations for each extracted head-entity. Next, these two subtasks are further deconstructed into several sequence labeling problems based on our proposed span-based tagging scheme, which are conveniently solved by a hierarchical boundary tagger and a multi-span decoding algorithm. Owing to the reasonable decomposition strategy, our model can fully capture the semantic interdependency between different steps, as well as reduce noise from irrelevant entity pairs. Experimental results show that our method outperforms previous work by 5.2%, 5.9% and 21.5% (F1 score), achieving a new state-of-the-art on three public datasets 7 authors · Sep 10, 2019
1 Ask Me Anything: Dynamic Memory Networks for Natural Language Processing Most tasks in natural language processing can be cast into question answering (QA) problems over language input. We introduce the dynamic memory network (DMN), a neural network architecture which processes input sequences and questions, forms episodic memories, and generates relevant answers. Questions trigger an iterative attention process which allows the model to condition its attention on the inputs and the result of previous iterations. These results are then reasoned over in a hierarchical recurrent sequence model to generate answers. The DMN can be trained end-to-end and obtains state-of-the-art results on several types of tasks and datasets: question answering (Facebook's bAbI dataset), text classification for sentiment analysis (Stanford Sentiment Treebank) and sequence modeling for part-of-speech tagging (WSJ-PTB). The training for these different tasks relies exclusively on trained word vector representations and input-question-answer triplets. 9 authors · Jun 24, 2015