shallowclose commited on
Commit
8c81eb3
Β·
verified Β·
1 Parent(s): e6a80e9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +121 -3
README.md CHANGED
@@ -1,3 +1,121 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+ # Full-Volume Inference without Performance Degradation
6
+
7
+ ### πŸ“ Paper Title
8
+ **Memory-Efficient Full-Volume Inference for Large-Scale 3D Dense Prediction without Performance Degradation** in **Communications Engineering** (2025) by Jintao Li and Xinming Wu
9
+
10
+ This work introduces a scalable inference framework that enables **whole-volume 3D prediction without accuracy loss**, even on extremely large seismic datasets.
11
+ The approach restructures high-memory operators during inference only (no retraining required), allowing models to process volumes up to `1024Β³` directly on modern GPUs.
12
+
13
+ The method is particularly useful for seismic interpretation tasks such as fault detection, RGT estimation, implicit structural modeling, and geological feature segmentation.
14
+
15
+
16
+ Homepage: [https://github.com/JintaoLee-Roger/torchseis](https://github.com/JintaoLee-Roger/torchseis)
17
+
18
+ ---
19
+
20
+ ## πŸ”‘ Key Features
21
+
22
+ βœ” **Retraining-free**: works with existing pretrained models
23
+ βœ” **Whole-volume inference**: no ghost boundaries or stitching artifacts
24
+ βœ” **Memory-efficient**: reduces decoder/stem memory footprint
25
+ βœ” **Faster runtime**: avoids slow CuDNN kernel fallback
26
+ βœ” **Operator-level optimization**: convolution, interpolation, and normalization
27
+
28
+ ---
29
+
30
+ ## πŸš€ Basic Usage
31
+
32
+ Below is an example using `FaultSeg3D` under the TorchSeis framework:
33
+
34
+ ```python
35
+ import torch
36
+ from torchseis import models as zoo
37
+
38
+ # 1. Load model
39
+ model = zoo.FaultSeg3d()
40
+
41
+ # 2. Load pretrained weights
42
+ state = torch.load('faultseg3d-2020-70.pth', weights_only=True)
43
+ model.load_state_dict(state)
44
+
45
+ # 3. Convert to GPU
46
+ model = model.half().eval().cuda()
47
+
48
+ # 4. Prepare input volume
49
+ data = torch.from_numpy(f3d[np.newaxis, np.newaxis].copy()).half().cuda()
50
+
51
+ # 5. Full-volume inference (no tiling)
52
+ with torch.no_grad():
53
+ pred = model(data, rank=3).cpu().numpy()
54
+ ```
55
+
56
+ > `rank=3` means that using strategy 4 in the paper.
57
+
58
+ ---
59
+
60
+ ## 🧠 Model Zoo Compatibility
61
+
62
+ The full-volume inference method is compatible with the following TorchSeis models, which are available in the [torchseis-efficiency-infer](https://huggingface.co/shallowclose/torchseis-efficiency-infer) on **Hugging Face Hub**. Besides, these models can also be accessed via **Baidu Netdisk**:
63
+
64
+ ι€šθΏ‡η½‘η›˜εˆ†δΊ«ηš„ζ–‡δ»ΆοΌštorchseis-efficiency-infer
65
+ ι“ΎζŽ₯: [https://pan.baidu.com/s/1ygUPYIO0S1AvsU4-IMz4pg?pwd=y7cn](https://pan.baidu.com/s/1ygUPYIO0S1AvsU4-IMz4pg?pwd=y7cn) 提取码: y7cn
66
+
67
+
68
+
69
+ | Model | Task | Source |
70
+ | ---------------- | ---------------------------------------------- | ---------------- |
71
+ | `FaultSeg3d` | Fault segmentation | [Wu, et, al., 2019, Geophysics](https://library.seg.org/doi/abs/10.1190/geo2018-0646.1) |
72
+ | `FaultSeg3dPlus` | Fault segmentation | [Li, et, al., 2024, Geophysics](https://library.seg.org/doi/abs/10.1190/geo2022-0778.1) |
73
+ | `FaultSSL` | Fault segmentation | [Dou, et, al., 2024, Geophysics](https://library.seg.org/doi/abs/10.1190/geo2023-0550.1) |
74
+ | `Bi21RGT3d` | Relative geological time (RGT) Estimation | [Bi, et, al., 2021, JGR-SE](https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021JB021882) |
75
+ | `DeepISMNet` | Implicit structural modeling | [Bi, et, al., 2022, GMD](https://gmd.copernicus.org/articles/15/6841/2022/) |
76
+ | `ChannelSeg3d` | Channel segmentation | [Gao, et, al., 2021, Geophysics](https://library.seg.org/doi/abs/10.1190/geo2020-0572.1) |
77
+ | `Wang25Channel` | Channel segmentation | [Wang, et, al., 2025, ESSD](https://essd.copernicus.org/articles/17/3447/2025) |
78
+ | `KarstSeg3d` | Paleokarst detection | [Wu, et, al., 2020, JGR-SE](https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020JB019685) |
79
+ | ~`GEM`~[^1] | ~Geological Everything Model~ | [Dou, et, al. 2025](https://arxiv.org/abs/2507.00419) |
80
+ | ~`SegFormer3D`~[^2] | ~3D medical segmentation (Transformer)~ | [Perera, et, al., 2025, CVPR](https://arxiv.org/abs/2404.10156) |
81
+
82
+
83
+ ---
84
+
85
+ [^1]: **`GEM` Model Note:** The paper is currently under peer review. We will await the official release of the model weights by the authors before considering distribution.
86
+
87
+ [^2]: **`SegFormer3D` Model Note:** As the code variables were not changed, users are advised to use the original author's weights directly. We are uncertain about the rights to redistribute these weight files.
88
+
89
+ ---
90
+
91
+ ## πŸ“Š Results Summary
92
+
93
+ The performance evaluations, visual comparisons, and numerical errors reported in our Communications Engineering (2025) paper are fully reproducible.
94
+
95
+ All plotting scripts and evaluation utilities can be found under `scripts/infer25ce/` in the repository: [torchseisJintaoLee-Roger/torchseis](https://github.com/JintaoLee-Roger/torchseis).
96
+
97
+ This directory contains:
98
+ - **Fig. 3** – Runtime and memory usage comparisons across models
99
+ - **Fig. S1** – Runtime and memory usage comparisons across models
100
+ - **Table S1** – Numerical error statistics (full vs. chunked inference)
101
+
102
+ The raw files used to compose Figure 5 is on the zenodo: [https://doi.org/10.5281/zenodo.17810071](https://doi.org/10.5281/zenodo.17810071)
103
+
104
+ ---
105
+
106
+ ## πŸ“š Citation
107
+
108
+ If this work or the inference strategy is used in your research, please cite:
109
+
110
+ ```bibtex
111
+ @article{li2025infer,
112
+ title={Memory-Efficient Full-Volume Inference for Large-Scale 3D Dense Prediction without Performance Degradation},
113
+ author={Li, Jintao and Wu, Xinming},
114
+ journal={Communications Engineering},
115
+ year={2025}
116
+ }
117
+ ```
118
+
119
+ ---
120
+
121
+ For questions or contributions, please submit an issue or pull request via the main repository.