Spaces:
Sleeping
Sleeping
File size: 12,472 Bytes
236f287 b759ccc 236f287 b759ccc 236f287 b759ccc 236f287 b759ccc 236f287 b759ccc 236f287 b759ccc 236f287 b759ccc 236f287 b759ccc 236f287 b759ccc 236f287 b759ccc 236f287 b759ccc 236f287 b759ccc 236f287 1832e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import queue
import threading
import gc
import torch
import torch.nn.functional as F
from transformers import (
HubertModel,
Wav2Vec2FeatureExtractor,
Wav2Vec2Model,
WavLMModel,
)
from config import BATCH_SIZE, ENERGY_HOP_MS, ENERGY_WIN_MS, SR
from utils import get_gpu_count
class BalancedMultiGPUModel:
"""
Distributes model inference workload across GPUs.
"""
def __init__(self, model_name, layer, max_gpus=None):
self.layer = layer
self.models = []
self.extractors = []
self.devices = []
ngpu = get_gpu_count(max_gpus)
for gpu_id in range(ngpu):
device = f"cuda:{gpu_id}"
self.devices.append(device)
ckpt, cls, _ = get_model_config(layer)[model_name]
extractor = Wav2Vec2FeatureExtractor.from_pretrained(ckpt)
attn_impl = "eager" if cls is WavLMModel else "sdpa"
model = cls.from_pretrained(
ckpt,
output_hidden_states=True,
use_safetensors=True,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
attn_implementation=attn_impl
)
model.eval()
model = model.to(device)
for param in model.parameters():
param.requires_grad = False
self.extractors.append(extractor)
self.models.append(model)
self.gpu_queues = [queue.Queue() for _ in range(len(self.devices))]
self.result_queue = queue.Queue()
self.workers = []
for i in range(len(self.devices)):
worker = threading.Thread(target=self._gpu_worker, args=(i,))
worker.daemon = True
worker.start()
self.workers.append(worker)
def _gpu_worker(self, gpu_id):
device = self.devices[gpu_id]
model = self.models[gpu_id]
extractor = self.extractors[gpu_id]
while True:
task = self.gpu_queues[gpu_id].get()
if task is None:
break
signals, masks, use_mlm, task_id = task
try:
inputs = extractor(
signals, sampling_rate=SR, return_tensors="pt", padding=True
)
input_values = inputs.input_values.to(device, non_blocking=True)
torch.cuda.empty_cache()
orig_mode = model.training
model.train() if use_mlm else model.eval()
with torch.no_grad():
with torch.amp.autocast(device_type='cuda', dtype=torch.float16):
hs = model(
input_values, output_hidden_states=True
).hidden_states[self.layer]
model.train(orig_mode)
B, T, D = hs.shape
keep = []
for b in range(B):
mask_b = masks[b].float().unsqueeze(0).unsqueeze(0).to(device)
mask_t = F.interpolate(mask_b, size=T, mode="nearest")[0, 0].bool()
keep.append(hs[b][mask_t].cpu())
del hs, input_values, inputs
torch.cuda.empty_cache()
if keep:
L_max = max(x.shape[0] for x in keep)
keep_padded = [
F.pad(x, (0, 0, 0, L_max - x.shape[0])) for x in keep
]
result = torch.stack(keep_padded, dim=0)
else:
result = torch.empty(0, 0, 0)
self.result_queue.put((task_id, result))
except Exception as e:
self.result_queue.put((task_id, e))
finally:
torch.cuda.empty_cache()
def process_batch(self, signals, masks, use_mlm=False):
if not signals:
return torch.empty(0, 0, 0)
batch_size = len(signals)
split = (batch_size + len(self.devices) - 1) // len(self.devices)
results = {}
task_id = 0
for i in range(0, batch_size, split):
end = min(i + split, batch_size)
gpu_id = (i // split) % len(self.devices)
self.gpu_queues[gpu_id].put(
(signals[i:end], masks[i:end], use_mlm, task_id)
)
task_id += 1
for _ in range(task_id):
tid, result = self.result_queue.get()
if isinstance(result, Exception):
raise result
results[tid] = result
parts = [results[i] for i in range(task_id) if results[i].numel() > 0]
return torch.cat(parts, dim=0) if parts else torch.empty(0, 0, 0)
def cleanup(self):
"""Explicit cleanup method"""
for q in self.gpu_queues:
q.put(None)
for w in self.workers:
w.join(timeout=5.0)
for model in self.models:
del model
for extractor in self.extractors:
del extractor
self.models.clear()
self.extractors.clear()
torch.cuda.empty_cache()
gc.collect()
def __del__(self):
self.cleanup()
def get_model_config(layer):
"""
Get self-supervised model configuration.
:param layer: specific transformer layer to choose.
:return: Configuration.
"""
return {
"raw": (None, None, None),
"wavlm": ("microsoft/wavlm-large", WavLMModel, layer),
"wav2vec2": ("facebook/wav2vec2-large-lv60", Wav2Vec2Model, layer),
"hubert": ("facebook/hubert-large-ll60k", HubertModel, layer),
"wavlm_base": ("microsoft/wavlm-base", WavLMModel, layer),
"wav2vec2_base": ("facebook/wav2vec2-base", Wav2Vec2Model, layer),
"hubert_base": ("facebook/hubert-base-ls960", HubertModel, layer),
"wav2vec2_xlsr": ("facebook/wav2vec2-large-xlsr-53", Wav2Vec2Model, layer),
}
_loaded_models = {}
def load_model(name, layer, max_gpus=None):
"""
Load the chosen self-supervised model.
:param name: name of model.
:param layer: chosen layer.
:param max_gpus: maximal gpus to use.
:return: extractor, model, and layer.
"""
global _loaded_models
if _loaded_models:
for key, model_data in _loaded_models.items():
if isinstance(model_data, tuple) and len(model_data) == 2:
if isinstance(model_data[0], BalancedMultiGPUModel):
model_data[0].cleanup()
elif isinstance(model_data[0], tuple):
_, model = model_data[0]
del model
_loaded_models.clear()
torch.cuda.empty_cache()
gc.collect()
if name.lower() in {"raw", "waveform"}:
return "raw", layer
ngpu = get_gpu_count(max_gpus)
if ngpu > 1:
model = BalancedMultiGPUModel(name, layer, max_gpus)
_loaded_models[name] = (model, layer)
return model, layer
else:
ckpt, cls, layer_eff = get_model_config(layer)[name]
extractor = Wav2Vec2FeatureExtractor.from_pretrained(ckpt)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
attn_impl = "eager" if cls is WavLMModel else "sdpa"
model = cls.from_pretrained(
ckpt,
output_hidden_states=True,
use_safetensors=True,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
attn_implementation=attn_impl
)
model.eval()
model = model.to(device)
for param in model.parameters():
param.requires_grad = False
model_tuple = ((extractor, model), layer_eff)
_loaded_models[name] = model_tuple
return (extractor, model), layer_eff
def cleanup_all_models():
"""
Call this at the end of each experiment to ensure complete cleanup
"""
global _loaded_models
if _loaded_models:
for key, model_data in _loaded_models.items():
if isinstance(model_data, tuple) and len(model_data) == 2:
if isinstance(model_data[0], BalancedMultiGPUModel):
model_data[0].cleanup()
elif isinstance(model_data[0], tuple):
_, model = model_data[0]
del model
_loaded_models.clear()
torch.cuda.empty_cache()
gc.collect()
def embed_batch_raw(signals, masks_audio):
"""
Waveform encoding in case it was chosen to skip self-supervised encording and push waveform directly to diffusion maps
:param signals: waveform signals.
:param masks_audio: voice activity masks of sources.
:return:
"""
win = int(ENERGY_WIN_MS * SR / 1000)
hop = int(ENERGY_HOP_MS * SR / 1000)
reps, L_max = [], 0
for sig_np, mask_np in zip(signals, masks_audio):
x = torch.as_tensor(sig_np[:-1], dtype=torch.float32)
frames = x.unfold(0, win, hop)
mask = torch.as_tensor(mask_np[: len(frames)], dtype=torch.bool)
keep = frames[mask] if mask.any() else frames[:1]
reps.append(keep)
L_max = max(L_max, keep.size(0))
reps = [F.pad(r, (0, 0, 0, L_max - r.size(0))) for r in reps]
return torch.stack(reps, dim=0)
def embed_batch_single_gpu(
signals, masks_audio, extractor, model, layer, use_mlm=False
):
"""
See embed_batch.
"""
if not signals:
return torch.empty(0, 0, 0)
device = next(model.parameters()).device
max_batch = 2
all_keeps = []
for i in range(0, len(signals), max_batch):
batch_signals = signals[i:i + max_batch]
batch_masks = masks_audio[i:i + max_batch]
inputs = extractor(batch_signals, sampling_rate=SR, return_tensors="pt", padding=True)
input_values = inputs.input_values.to(device, non_blocking=True)
orig_mode = model.training
model.train() if use_mlm else model.eval()
with torch.no_grad():
with torch.amp.autocast(device_type='cuda', dtype=torch.float16):
hs = model(input_values, output_hidden_states=True).hidden_states[layer]
model.train(orig_mode)
B, T, D = hs.shape
for b in range(B):
mask_b = batch_masks[b].float().unsqueeze(0).unsqueeze(0).to(device)
mask_t = F.interpolate(mask_b, size=T, mode="nearest")[0, 0].bool()
all_keeps.append(hs[b][mask_t].cpu())
del hs, input_values, inputs
torch.cuda.empty_cache()
if all_keeps:
L_max = max(x.shape[0] for x in all_keeps)
keep_padded = [F.pad(x, (0, 0, 0, L_max - x.shape[0])) for x in all_keeps]
result = torch.stack(keep_padded, dim=0)
del all_keeps, keep_padded
return result
else:
return torch.empty(0, 0, 0)
def embed_batch(signals, masks_audio, model_wrapper, layer, use_mlm=False):
"""
Encode a batch of signals using the self-supervised model chosen.
:param signals: waveform signals to encode.
:param masks_audio: voice activity masks of sources.
:param model_wrapper: chosen model's wrapper.
:param layer: transformer layer.
:param use_mlm: deprecated.
:return: embedded signal representations by the model's layer.
"""
if model_wrapper == "raw":
return embed_batch_raw(signals, masks_audio)
if isinstance(model_wrapper, BalancedMultiGPUModel):
all_embeddings = []
batch_size = min(BATCH_SIZE, 2)
for i in range(0, len(signals), batch_size):
batch_emb = model_wrapper.process_batch(
signals[i: i + batch_size], masks_audio[i: i + batch_size], use_mlm
)
if batch_emb.numel() > 0:
all_embeddings.append(batch_emb)
torch.cuda.empty_cache()
if all_embeddings:
result = torch.cat(all_embeddings, dim=0)
del all_embeddings
return result
else:
return torch.empty(0, 0, 0)
else:
extractor, model = model_wrapper
return embed_batch_single_gpu(
signals, masks_audio, extractor, model, layer, use_mlm=use_mlm
) |