Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# app.py β encoder-only demo for bert-beatrix-2048
|
| 2 |
# launch: python app.py
|
| 3 |
# -----------------------------------------------
|
| 4 |
import json, re, sys, math
|
|
@@ -40,12 +40,6 @@ with cfg_path.open("w") as f: json.dump(cfg,f,indent=2)
|
|
| 40 |
handler, full_model, tokenizer = create_handler_from_checkpoint(LOCAL_CKPT)
|
| 41 |
full_model = full_model.eval().cuda()
|
| 42 |
|
| 43 |
-
encoder = full_model.bert.encoder
|
| 44 |
-
embeddings = full_model.bert.embeddings
|
| 45 |
-
emb_ln = full_model.bert.emb_ln
|
| 46 |
-
emb_drop = full_model.bert.emb_drop
|
| 47 |
-
mlm_head = full_model.cls # prediction head
|
| 48 |
-
|
| 49 |
# ------------------------------------------------------------------
|
| 50 |
# 2. Symbolic roles -------------------------------------------------
|
| 51 |
SYMBOLIC_ROLES = [
|
|
@@ -56,112 +50,443 @@ SYMBOLIC_ROLES = [
|
|
| 56 |
"<object_left>", "<object_right>", "<relation>", "<intent>", "<style>",
|
| 57 |
"<fabric>", "<jewelry>",
|
| 58 |
]
|
| 59 |
-
if any(tokenizer.convert_tokens_to_ids(t)==tokenizer.unk_token_id
|
| 60 |
-
for t in SYMBOLIC_ROLES):
|
| 61 |
-
sys.exit("β tokenizer missing special tokens")
|
| 62 |
|
| 63 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
MASK = tokenizer.mask_token
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
|
| 67 |
# ------------------------------------------------------------------
|
| 68 |
-
# 3.
|
| 69 |
-
def cosine(a,b):
|
| 70 |
-
return torch.nn.functional.cosine_similarity(a,b,dim=-1)
|
| 71 |
|
| 72 |
-
def
|
| 73 |
"""
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
"""
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
|
| 86 |
@spaces.GPU
|
| 87 |
-
def
|
|
|
|
|
|
|
|
|
|
| 88 |
if not selected_roles:
|
| 89 |
-
selected_roles =
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
|
| 143 |
# ------------------------------------------------------------------
|
| 144 |
-
# 4.
|
| 145 |
def build_interface():
|
| 146 |
-
with gr.Blocks(title="π§ Symbolic
|
| 147 |
-
gr.Markdown("
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
return demo
|
| 164 |
|
| 165 |
|
| 166 |
-
if __name__=="__main__":
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py β FIXED encoder-only demo for bert-beatrix-2048
|
| 2 |
# launch: python app.py
|
| 3 |
# -----------------------------------------------
|
| 4 |
import json, re, sys, math
|
|
|
|
| 40 |
handler, full_model, tokenizer = create_handler_from_checkpoint(LOCAL_CKPT)
|
| 41 |
full_model = full_model.eval().cuda()
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
# ------------------------------------------------------------------
|
| 44 |
# 2. Symbolic roles -------------------------------------------------
|
| 45 |
SYMBOLIC_ROLES = [
|
|
|
|
| 50 |
"<object_left>", "<object_right>", "<relation>", "<intent>", "<style>",
|
| 51 |
"<fabric>", "<jewelry>",
|
| 52 |
]
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
# Verify all symbolic tokens exist in tokenizer
|
| 55 |
+
missing_tokens = []
|
| 56 |
+
symbolic_token_ids = {}
|
| 57 |
+
for token in SYMBOLIC_ROLES:
|
| 58 |
+
token_id = tokenizer.convert_tokens_to_ids(token)
|
| 59 |
+
if token_id == tokenizer.unk_token_id:
|
| 60 |
+
missing_tokens.append(token)
|
| 61 |
+
else:
|
| 62 |
+
symbolic_token_ids[token] = token_id
|
| 63 |
+
|
| 64 |
+
if missing_tokens:
|
| 65 |
+
print(f"β οΈ Missing symbolic tokens: {missing_tokens}")
|
| 66 |
+
print("Available tokens will be used for classification")
|
| 67 |
+
|
| 68 |
MASK = tokenizer.mask_token
|
| 69 |
+
MASK_ID = tokenizer.mask_token_id
|
| 70 |
+
|
| 71 |
+
print(f"β
Loaded {len(symbolic_token_ids)} symbolic tokens")
|
| 72 |
|
| 73 |
|
| 74 |
# ------------------------------------------------------------------
|
| 75 |
+
# 3. FIXED MLM-based symbolic classification ----------------------
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
def get_symbolic_predictions(input_ids, attention_mask, mask_positions, selected_roles):
|
| 78 |
"""
|
| 79 |
+
Proper MLM-based prediction for symbolic tokens at masked positions
|
| 80 |
+
|
| 81 |
+
Args:
|
| 82 |
+
input_ids: (B, S) token IDs with [MASK] at positions to classify
|
| 83 |
+
attention_mask: (B, S) attention mask
|
| 84 |
+
mask_positions: list of positions that are masked
|
| 85 |
+
selected_roles: list of symbolic role tokens to consider
|
| 86 |
+
|
| 87 |
+
Returns:
|
| 88 |
+
predictions and probabilities for each masked position
|
| 89 |
"""
|
| 90 |
+
# Get MLM logits from the model (this is what it was trained for)
|
| 91 |
+
with torch.no_grad():
|
| 92 |
+
outputs = full_model(input_ids=input_ids, attention_mask=attention_mask)
|
| 93 |
+
logits = outputs.logits # (B, S, V)
|
| 94 |
+
|
| 95 |
+
# Filter to only selected symbolic role token IDs
|
| 96 |
+
selected_token_ids = [symbolic_token_ids[role] for role in selected_roles
|
| 97 |
+
if role in symbolic_token_ids]
|
| 98 |
+
|
| 99 |
+
if not selected_token_ids:
|
| 100 |
+
return [], []
|
| 101 |
+
|
| 102 |
+
results = []
|
| 103 |
+
|
| 104 |
+
for pos in mask_positions:
|
| 105 |
+
# Get logits for this masked position
|
| 106 |
+
pos_logits = logits[0, pos] # (V,)
|
| 107 |
+
|
| 108 |
+
# Extract logits for symbolic tokens only
|
| 109 |
+
symbolic_logits = pos_logits[selected_token_ids] # (num_symbolic,)
|
| 110 |
+
|
| 111 |
+
# Apply softmax to get probabilities
|
| 112 |
+
symbolic_probs = F.softmax(symbolic_logits, dim=-1)
|
| 113 |
+
|
| 114 |
+
# Get top predictions
|
| 115 |
+
top_indices = torch.argsort(symbolic_probs, descending=True)
|
| 116 |
+
|
| 117 |
+
pos_results = []
|
| 118 |
+
for i in top_indices:
|
| 119 |
+
token_idx = selected_token_ids[i]
|
| 120 |
+
token = tokenizer.convert_ids_to_tokens([token_idx])[0]
|
| 121 |
+
prob = symbolic_probs[i].item()
|
| 122 |
+
pos_results.append({
|
| 123 |
+
"token": token,
|
| 124 |
+
"probability": prob,
|
| 125 |
+
"token_id": token_idx
|
| 126 |
+
})
|
| 127 |
+
|
| 128 |
+
results.append({
|
| 129 |
+
"position": pos,
|
| 130 |
+
"predictions": pos_results
|
| 131 |
+
})
|
| 132 |
+
|
| 133 |
+
return results
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def create_strategic_masks(text, tokenizer, strategy="content_words"):
|
| 137 |
+
"""
|
| 138 |
+
Create strategic mask positions based on different strategies
|
| 139 |
+
|
| 140 |
+
Args:
|
| 141 |
+
text: input text
|
| 142 |
+
tokenizer: tokenizer
|
| 143 |
+
strategy: masking strategy
|
| 144 |
+
|
| 145 |
+
Returns:
|
| 146 |
+
input_ids with masks, attention_mask, original_tokens, mask_positions
|
| 147 |
+
"""
|
| 148 |
+
# Tokenize original text
|
| 149 |
+
batch = tokenizer(text, return_tensors="pt", add_special_tokens=True)
|
| 150 |
+
input_ids = batch.input_ids[0] # (S,)
|
| 151 |
+
attention_mask = batch.attention_mask[0] # (S,)
|
| 152 |
+
|
| 153 |
+
# Get original tokens for reference
|
| 154 |
+
original_tokens = tokenizer.convert_ids_to_tokens(input_ids)
|
| 155 |
+
|
| 156 |
+
# Find positions to mask based on strategy
|
| 157 |
+
mask_positions = []
|
| 158 |
+
|
| 159 |
+
if strategy == "content_words":
|
| 160 |
+
# Mask content words (avoid special tokens, punctuation, common words)
|
| 161 |
+
skip_tokens = {
|
| 162 |
+
tokenizer.cls_token, tokenizer.sep_token, tokenizer.pad_token,
|
| 163 |
+
".", ",", "!", "?", ":", ";", "'", '"', "-", "(", ")", "[", "]",
|
| 164 |
+
"the", "a", "an", "and", "or", "but", "in", "on", "at", "to",
|
| 165 |
+
"for", "of", "with", "by", "is", "are", "was", "were", "be", "been"
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
for i, token in enumerate(original_tokens):
|
| 169 |
+
if (token not in skip_tokens and
|
| 170 |
+
not token.startswith("##") and # avoid subword tokens
|
| 171 |
+
len(token) > 2 and
|
| 172 |
+
token.isalpha()):
|
| 173 |
+
mask_positions.append(i)
|
| 174 |
+
|
| 175 |
+
elif strategy == "every_nth":
|
| 176 |
+
# Mask every 3rd token (avoiding special tokens)
|
| 177 |
+
for i in range(1, len(original_tokens) - 1, 3): # skip CLS and SEP
|
| 178 |
+
mask_positions.append(i)
|
| 179 |
+
|
| 180 |
+
elif strategy == "random":
|
| 181 |
+
# Randomly mask 15% of tokens
|
| 182 |
+
import random
|
| 183 |
+
candidates = list(range(1, len(original_tokens) - 1)) # skip CLS and SEP
|
| 184 |
+
num_to_mask = max(1, int(len(candidates) * 0.15))
|
| 185 |
+
mask_positions = random.sample(candidates, min(num_to_mask, len(candidates)))
|
| 186 |
+
mask_positions.sort()
|
| 187 |
+
|
| 188 |
+
elif strategy == "manual":
|
| 189 |
+
# For manual specification - return original for now
|
| 190 |
+
# Users can specify positions in the UI
|
| 191 |
+
pass
|
| 192 |
+
|
| 193 |
+
# Limit to reasonable number of masks
|
| 194 |
+
mask_positions = mask_positions[:10] # Max 10 masks for UI clarity
|
| 195 |
+
|
| 196 |
+
# Create masked input
|
| 197 |
+
masked_input_ids = input_ids.clone()
|
| 198 |
+
for pos in mask_positions:
|
| 199 |
+
masked_input_ids[pos] = MASK_ID
|
| 200 |
+
|
| 201 |
+
return masked_input_ids.unsqueeze(0), attention_mask.unsqueeze(0), original_tokens, mask_positions
|
| 202 |
|
| 203 |
|
| 204 |
@spaces.GPU
|
| 205 |
+
def symbolic_classification_analysis(text, selected_roles, masking_strategy="content_words", num_predictions=5):
|
| 206 |
+
"""
|
| 207 |
+
Perform symbolic classification analysis using MLM prediction
|
| 208 |
+
"""
|
| 209 |
if not selected_roles:
|
| 210 |
+
selected_roles = list(symbolic_token_ids.keys())
|
| 211 |
+
|
| 212 |
+
if not text.strip():
|
| 213 |
+
return "Please enter some text to analyze.", "", 0
|
| 214 |
+
|
| 215 |
+
try:
|
| 216 |
+
# Create strategically masked input
|
| 217 |
+
masked_input_ids, attention_mask, original_tokens, mask_positions = create_strategic_masks(
|
| 218 |
+
text, tokenizer, masking_strategy
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
if not mask_positions:
|
| 222 |
+
return "No suitable positions found for masking. Try different text or strategy.", "", 0
|
| 223 |
+
|
| 224 |
+
# Move to device
|
| 225 |
+
masked_input_ids = masked_input_ids.to("cuda")
|
| 226 |
+
attention_mask = attention_mask.to("cuda")
|
| 227 |
+
|
| 228 |
+
# Get symbolic predictions
|
| 229 |
+
predictions = get_symbolic_predictions(
|
| 230 |
+
masked_input_ids, attention_mask, mask_positions, selected_roles
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
# Build detailed analysis
|
| 234 |
+
analysis = {
|
| 235 |
+
"input_text": text,
|
| 236 |
+
"masking_strategy": masking_strategy,
|
| 237 |
+
"total_tokens": len(original_tokens),
|
| 238 |
+
"masked_positions": len(mask_positions),
|
| 239 |
+
"available_symbolic_roles": len(selected_roles),
|
| 240 |
+
"analysis_results": []
|
| 241 |
+
}
|
| 242 |
+
|
| 243 |
+
for pred_data in predictions:
|
| 244 |
+
pos = pred_data["position"]
|
| 245 |
+
original_token = original_tokens[pos]
|
| 246 |
+
|
| 247 |
+
# Show top N predictions
|
| 248 |
+
top_preds = pred_data["predictions"][:num_predictions]
|
| 249 |
+
|
| 250 |
+
position_analysis = {
|
| 251 |
+
"position": pos,
|
| 252 |
+
"original_token": original_token,
|
| 253 |
+
"top_predictions": []
|
| 254 |
+
}
|
| 255 |
+
|
| 256 |
+
for pred in top_preds:
|
| 257 |
+
position_analysis["top_predictions"].append({
|
| 258 |
+
"symbolic_role": pred["token"],
|
| 259 |
+
"probability": f"{pred['probability']:.4f}",
|
| 260 |
+
"confidence": "High" if pred["probability"] > 0.3 else "Medium" if pred["probability"] > 0.1 else "Low"
|
| 261 |
+
})
|
| 262 |
+
|
| 263 |
+
analysis["analysis_results"].append(position_analysis)
|
| 264 |
+
|
| 265 |
+
# Create readable summary
|
| 266 |
+
summary_lines = []
|
| 267 |
+
max_prob = 0
|
| 268 |
+
best_prediction = None
|
| 269 |
+
|
| 270 |
+
for result in analysis["analysis_results"]:
|
| 271 |
+
pos = result["position"]
|
| 272 |
+
orig = result["original_token"]
|
| 273 |
+
top_pred = result["top_predictions"][0] if result["top_predictions"] else None
|
| 274 |
+
|
| 275 |
+
if top_pred:
|
| 276 |
+
prob = float(top_pred["probability"])
|
| 277 |
+
role = top_pred["symbolic_role"]
|
| 278 |
+
summary_lines.append(
|
| 279 |
+
f"Position {pos:2d}: '{orig}' β {role} ({top_pred['probability']}, {top_pred['confidence']})"
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
if prob > max_prob:
|
| 283 |
+
max_prob = prob
|
| 284 |
+
best_prediction = f"{role} (confidence: {top_pred['confidence']})"
|
| 285 |
+
|
| 286 |
+
summary = "\n".join(summary_lines)
|
| 287 |
+
if best_prediction:
|
| 288 |
+
summary = f"π― Best Match: {best_prediction}\n\n" + summary
|
| 289 |
+
|
| 290 |
+
return json.dumps(analysis, indent=2), summary, len(mask_positions)
|
| 291 |
+
|
| 292 |
+
except Exception as e:
|
| 293 |
+
error_msg = f"Error during analysis: {str(e)}"
|
| 294 |
+
print(error_msg)
|
| 295 |
+
return error_msg, "", 0
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
def create_manual_mask_analysis(text, mask_positions_str, selected_roles):
|
| 299 |
+
"""
|
| 300 |
+
Allow manual specification of mask positions
|
| 301 |
+
"""
|
| 302 |
+
try:
|
| 303 |
+
# Parse mask positions
|
| 304 |
+
mask_positions = [int(x.strip()) for x in mask_positions_str.split(",") if x.strip().isdigit()]
|
| 305 |
+
|
| 306 |
+
if not mask_positions:
|
| 307 |
+
return "Please specify valid mask positions (comma-separated numbers)", "", 0
|
| 308 |
+
|
| 309 |
+
# Tokenize text
|
| 310 |
+
batch = tokenizer(text, return_tensors="pt", add_special_tokens=True)
|
| 311 |
+
input_ids = batch.input_ids[0]
|
| 312 |
+
attention_mask = batch.attention_mask[0]
|
| 313 |
+
original_tokens = tokenizer.convert_ids_to_tokens(input_ids)
|
| 314 |
+
|
| 315 |
+
# Validate positions
|
| 316 |
+
valid_positions = [pos for pos in mask_positions if 0 <= pos < len(input_ids)]
|
| 317 |
+
if not valid_positions:
|
| 318 |
+
return f"Invalid positions. Text has {len(input_ids)} tokens (0-{len(input_ids)-1})", "", 0
|
| 319 |
+
|
| 320 |
+
# Create masked input
|
| 321 |
+
masked_input_ids = input_ids.clone()
|
| 322 |
+
for pos in valid_positions:
|
| 323 |
+
masked_input_ids[pos] = MASK_ID
|
| 324 |
+
|
| 325 |
+
# Run analysis
|
| 326 |
+
masked_input_ids = masked_input_ids.unsqueeze(0).to("cuda")
|
| 327 |
+
attention_mask = attention_mask.unsqueeze(0).to("cuda")
|
| 328 |
+
|
| 329 |
+
predictions = get_symbolic_predictions(
|
| 330 |
+
masked_input_ids, attention_mask, valid_positions, selected_roles
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
# Format results
|
| 334 |
+
results = []
|
| 335 |
+
for pred_data in predictions:
|
| 336 |
+
pos = pred_data["position"]
|
| 337 |
+
original = original_tokens[pos]
|
| 338 |
+
top_pred = pred_data["predictions"][0] if pred_data["predictions"] else None
|
| 339 |
+
|
| 340 |
+
if top_pred:
|
| 341 |
+
results.append(
|
| 342 |
+
f"Pos {pos}: '{original}' β {top_pred['token']} ({top_pred['probability']:.4f})"
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
return "\n".join(results), f"Analyzed {len(valid_positions)} positions", len(valid_positions)
|
| 346 |
+
|
| 347 |
+
except Exception as e:
|
| 348 |
+
return f"Error: {str(e)}", "", 0
|
| 349 |
|
| 350 |
|
| 351 |
# ------------------------------------------------------------------
|
| 352 |
+
# 4. Gradio UI -----------------------------------------------------
|
| 353 |
def build_interface():
|
| 354 |
+
with gr.Blocks(title="π§ MLM Symbolic Classifier", theme=gr.themes.Soft()) as demo:
|
| 355 |
+
gr.Markdown("# π§ MLM-Based Symbolic Classification")
|
| 356 |
+
gr.Markdown("Analyze text using masked language modeling to predict symbolic roles at specific positions.")
|
| 357 |
+
|
| 358 |
+
with gr.Tab("Automatic Analysis"):
|
| 359 |
+
with gr.Row():
|
| 360 |
+
with gr.Column():
|
| 361 |
+
txt_input = gr.Textbox(
|
| 362 |
+
label="Input Text",
|
| 363 |
+
lines=4,
|
| 364 |
+
placeholder="Enter text to analyze for symbolic role classification..."
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
with gr.Row():
|
| 368 |
+
masking_strategy = gr.Dropdown(
|
| 369 |
+
choices=["content_words", "every_nth", "random"],
|
| 370 |
+
value="content_words",
|
| 371 |
+
label="Masking Strategy"
|
| 372 |
+
)
|
| 373 |
+
num_predictions = gr.Slider(
|
| 374 |
+
minimum=1, maximum=10, value=5, step=1,
|
| 375 |
+
label="Top Predictions per Position"
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
roles_selection = gr.CheckboxGroup(
|
| 379 |
+
choices=list(symbolic_token_ids.keys()),
|
| 380 |
+
value=list(symbolic_token_ids.keys()),
|
| 381 |
+
label="Symbolic Roles to Consider",
|
| 382 |
+
max_choices=len(symbolic_token_ids)
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
analyze_btn = gr.Button("π Analyze", variant="primary")
|
| 386 |
+
|
| 387 |
+
with gr.Column():
|
| 388 |
+
summary_output = gr.Textbox(
|
| 389 |
+
label="Analysis Summary",
|
| 390 |
+
lines=10,
|
| 391 |
+
max_lines=15
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
with gr.Row():
|
| 395 |
+
positions_analyzed = gr.Number(label="Positions Analyzed", precision=0)
|
| 396 |
+
max_confidence = gr.Textbox(label="Best Prediction", max_lines=1)
|
| 397 |
+
|
| 398 |
+
detailed_output = gr.JSON(label="Detailed Results")
|
| 399 |
+
|
| 400 |
+
with gr.Tab("Manual Masking"):
|
| 401 |
+
with gr.Row():
|
| 402 |
+
with gr.Column():
|
| 403 |
+
manual_text = gr.Textbox(
|
| 404 |
+
label="Input Text",
|
| 405 |
+
lines=3,
|
| 406 |
+
placeholder="Enter text for manual analysis..."
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
mask_positions_input = gr.Textbox(
|
| 410 |
+
label="Mask Positions (comma-separated)",
|
| 411 |
+
placeholder="e.g., 2,5,8,12",
|
| 412 |
+
info="Specify token positions to mask (0-based indexing)"
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
manual_roles = gr.CheckboxGroup(
|
| 416 |
+
choices=list(symbolic_token_ids.keys()),
|
| 417 |
+
value=list(symbolic_token_ids.keys())[:10], # Default to first 10
|
| 418 |
+
label="Symbolic Roles"
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
manual_analyze_btn = gr.Button("π― Analyze Specific Positions")
|
| 422 |
+
|
| 423 |
+
with gr.Column():
|
| 424 |
+
manual_results = gr.Textbox(
|
| 425 |
+
label="Manual Analysis Results",
|
| 426 |
+
lines=8
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
manual_summary = gr.Textbox(label="Summary")
|
| 430 |
+
manual_count = gr.Number(label="Positions", precision=0)
|
| 431 |
+
|
| 432 |
+
with gr.Tab("Token Inspector"):
|
| 433 |
+
with gr.Row():
|
| 434 |
+
with gr.Column():
|
| 435 |
+
inspect_text = gr.Textbox(
|
| 436 |
+
label="Text to Inspect",
|
| 437 |
+
lines=2,
|
| 438 |
+
placeholder="Enter text to see tokenization..."
|
| 439 |
+
)
|
| 440 |
+
inspect_btn = gr.Button("π Inspect Tokens")
|
| 441 |
+
|
| 442 |
+
with gr.Column():
|
| 443 |
+
token_breakdown = gr.Textbox(
|
| 444 |
+
label="Token Breakdown",
|
| 445 |
+
lines=8,
|
| 446 |
+
info="Shows how text is tokenized with position indices"
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
# Event handlers
|
| 450 |
+
analyze_btn.click(
|
| 451 |
+
symbolic_classification_analysis,
|
| 452 |
+
inputs=[txt_input, roles_selection, masking_strategy, num_predictions],
|
| 453 |
+
outputs=[detailed_output, summary_output, positions_analyzed]
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
manual_analyze_btn.click(
|
| 457 |
+
create_manual_mask_analysis,
|
| 458 |
+
inputs=[manual_text, mask_positions_input, manual_roles],
|
| 459 |
+
outputs=[manual_results, manual_summary, manual_count]
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
def inspect_tokens(text):
|
| 463 |
+
if not text.strip():
|
| 464 |
+
return "Enter text to inspect tokenization"
|
| 465 |
+
|
| 466 |
+
tokens = tokenizer.tokenize(text, add_special_tokens=True)
|
| 467 |
+
result_lines = []
|
| 468 |
+
|
| 469 |
+
for i, token in enumerate(tokens):
|
| 470 |
+
result_lines.append(f"{i:2d}: '{token}'")
|
| 471 |
+
|
| 472 |
+
return "\n".join(result_lines)
|
| 473 |
+
|
| 474 |
+
inspect_btn.click(
|
| 475 |
+
inspect_tokens,
|
| 476 |
+
inputs=[inspect_text],
|
| 477 |
+
outputs=[token_breakdown]
|
| 478 |
+
)
|
| 479 |
+
|
| 480 |
return demo
|
| 481 |
|
| 482 |
|
| 483 |
+
if __name__ == "__main__":
|
| 484 |
+
print("π Starting MLM Symbolic Classifier...")
|
| 485 |
+
print(f"β
Model loaded with {len(symbolic_token_ids)} symbolic tokens")
|
| 486 |
+
print(f"π― Available symbolic roles: {list(symbolic_token_ids.keys())[:5]}...")
|
| 487 |
+
|
| 488 |
+
build_interface().launch(
|
| 489 |
+
server_name="0.0.0.0",
|
| 490 |
+
server_port=7860,
|
| 491 |
+
share=True
|
| 492 |
+
)
|