Spaces:
Running
Running
Created app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torchvision.transforms as T
|
| 3 |
+
import numpy as np
|
| 4 |
+
import cv2
|
| 5 |
+
import streamlit as st
|
| 6 |
+
import mediapipe as mp
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import os
|
| 9 |
+
torch.classes.__path__ = []
|
| 10 |
+
|
| 11 |
+
class FaceHairSegmenter:
|
| 12 |
+
def __init__(self):
|
| 13 |
+
# Use MediaPipe for face detection
|
| 14 |
+
self.mp_face_detection = mp.solutions.face_detection
|
| 15 |
+
self.face_detection = self.mp_face_detection.FaceDetection(
|
| 16 |
+
model_selection=1, # Use full range model
|
| 17 |
+
min_detection_confidence=0.6
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
# Load BiSeNet model
|
| 21 |
+
self.model = self.load_model()
|
| 22 |
+
|
| 23 |
+
# Define transforms - adjust according to BiSeNet requirements
|
| 24 |
+
self.transform = T.Compose([
|
| 25 |
+
T.Resize((512, 512)),
|
| 26 |
+
T.ToTensor(),
|
| 27 |
+
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 28 |
+
])
|
| 29 |
+
|
| 30 |
+
# CelebAMask-HQ classes - focus on the categories we want to keep
|
| 31 |
+
self.keep_classes = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 18] # All except 0, 14, 16
|
| 32 |
+
|
| 33 |
+
def load_model(self):
|
| 34 |
+
try:
|
| 35 |
+
# Import locally to avoid dependency issues if model isn't present
|
| 36 |
+
from model import BiSeNet
|
| 37 |
+
|
| 38 |
+
# Initialize BiSeNet with 19 classes (for CelebAMask-HQ)
|
| 39 |
+
model = BiSeNet(n_classes=19)
|
| 40 |
+
|
| 41 |
+
# Try to load the pretrained weights using a safer approach
|
| 42 |
+
try:
|
| 43 |
+
# First attempt: standard loading
|
| 44 |
+
model.load_state_dict(torch.load('bisenet.pth', map_location=torch.device('cpu')))
|
| 45 |
+
except RuntimeError as e:
|
| 46 |
+
if "__path__._path" in str(e):
|
| 47 |
+
# Alternative loading approach if we encounter the class path error
|
| 48 |
+
print("Using alternative model loading approach...")
|
| 49 |
+
checkpoint = torch.load('bisenet.pth', map_location='cpu', weights_only=True)
|
| 50 |
+
model.load_state_dict(checkpoint)
|
| 51 |
+
else:
|
| 52 |
+
# Other type of RuntimeError, re-raise
|
| 53 |
+
raise
|
| 54 |
+
|
| 55 |
+
model.eval()
|
| 56 |
+
|
| 57 |
+
if torch.cuda.is_available():
|
| 58 |
+
model = model.cuda()
|
| 59 |
+
|
| 60 |
+
print("BiSeNet model loaded successfully")
|
| 61 |
+
return model
|
| 62 |
+
except Exception as e:
|
| 63 |
+
print(f"Error loading model: {e}")
|
| 64 |
+
# Let's provide a more detailed error message to help with debugging
|
| 65 |
+
import traceback
|
| 66 |
+
traceback.print_exc()
|
| 67 |
+
return None
|
| 68 |
+
|
| 69 |
+
def detect_faces(self, image):
|
| 70 |
+
"""Detect faces using MediaPipe (expects image in RGB)."""
|
| 71 |
+
# Since image from cv2 is BGR, convert to RGB for MediaPipe
|
| 72 |
+
image_rgb = image if len(image.shape) == 3 and image.shape[2] == 3 else cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 73 |
+
h, w = image.shape[:2]
|
| 74 |
+
|
| 75 |
+
# Process with MediaPipe
|
| 76 |
+
results = self.face_detection.process(image_rgb)
|
| 77 |
+
|
| 78 |
+
bboxes = []
|
| 79 |
+
if results.detections:
|
| 80 |
+
for detection in results.detections:
|
| 81 |
+
bbox = detection.location_data.relative_bounding_box
|
| 82 |
+
x_min = max(0, int(bbox.xmin * w))
|
| 83 |
+
y_min = max(0, int(bbox.ymin * h))
|
| 84 |
+
x_max = min(w, int((bbox.xmin + bbox.width) * w))
|
| 85 |
+
y_max = min(h, int((bbox.ymin + bbox.height) * h))
|
| 86 |
+
bboxes.append((x_min, y_min, x_max, y_max))
|
| 87 |
+
|
| 88 |
+
if len(bboxes) > 1:
|
| 89 |
+
bboxes = self.remove_overlapping_boxes(bboxes)
|
| 90 |
+
|
| 91 |
+
return len(bboxes), bboxes
|
| 92 |
+
|
| 93 |
+
def remove_overlapping_boxes(self, boxes, overlap_threshold=0.5):
|
| 94 |
+
if not boxes:
|
| 95 |
+
return []
|
| 96 |
+
def box_area(box):
|
| 97 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
| 98 |
+
boxes = sorted(boxes, key=box_area, reverse=True)
|
| 99 |
+
keep = []
|
| 100 |
+
for current in boxes:
|
| 101 |
+
is_duplicate = False
|
| 102 |
+
for kept_box in keep:
|
| 103 |
+
x1 = max(current[0], kept_box[0])
|
| 104 |
+
y1 = max(current[1], kept_box[1])
|
| 105 |
+
x2 = min(current[2], kept_box[2])
|
| 106 |
+
y2 = min(current[3], kept_box[3])
|
| 107 |
+
if x1 < x2 and y1 < y2:
|
| 108 |
+
intersection = (x2 - x1) * (y2 - y1)
|
| 109 |
+
area1 = box_area(current)
|
| 110 |
+
area2 = box_area(kept_box)
|
| 111 |
+
union = area1 + area2 - intersection
|
| 112 |
+
iou = intersection / union
|
| 113 |
+
if iou > overlap_threshold:
|
| 114 |
+
is_duplicate = True
|
| 115 |
+
break
|
| 116 |
+
if not is_duplicate:
|
| 117 |
+
keep.append(current)
|
| 118 |
+
return keep
|
| 119 |
+
|
| 120 |
+
def segment_face_hair(self, image):
|
| 121 |
+
"""Segment face using BiSeNet trained on CelebAMask-HQ."""
|
| 122 |
+
if self.model is None:
|
| 123 |
+
return image, "Model not loaded correctly."
|
| 124 |
+
if image is None or image.size == 0:
|
| 125 |
+
return image, "Invalid image provided."
|
| 126 |
+
|
| 127 |
+
# Detect faces
|
| 128 |
+
num_faces, bboxes = self.detect_faces(image)
|
| 129 |
+
if num_faces == 0:
|
| 130 |
+
return image, "No face detected! Please upload an image with a clear face."
|
| 131 |
+
elif num_faces > 1:
|
| 132 |
+
debug_img = image.copy()
|
| 133 |
+
for (x_min, y_min, x_max, y_max) in bboxes:
|
| 134 |
+
cv2.rectangle(debug_img, (x_min, y_min), (x_max, y_max), (255, 0, 0), 2)
|
| 135 |
+
return debug_img, f"{num_faces} faces detected! Please upload an image with exactly ONE face."
|
| 136 |
+
|
| 137 |
+
# Get the face bounding box (we'll use this only for ROI, not for final segmentation)
|
| 138 |
+
bbox = bboxes[0]
|
| 139 |
+
x_min, y_min, x_max, y_max = bbox
|
| 140 |
+
h, w = image.shape[:2]
|
| 141 |
+
|
| 142 |
+
# Expand bounding box for better segmentation
|
| 143 |
+
face_height = y_max - y_min + 550
|
| 144 |
+
face_width = x_max - x_min + 550
|
| 145 |
+
|
| 146 |
+
y_min_exp = max(0, y_min - int(face_height * 0.5)) # Expand more for hair
|
| 147 |
+
x_min_exp = max(0, x_min - int(face_width * 0.3))
|
| 148 |
+
x_max_exp = min(w, x_max + int(face_width * 0.3))
|
| 149 |
+
y_max_exp = min(h, y_max + int(face_height * 0.2))
|
| 150 |
+
|
| 151 |
+
# Crop and prepare image for BiSeNet
|
| 152 |
+
face_region = image[y_min_exp:y_max_exp, x_min_exp:x_max_exp]
|
| 153 |
+
original_face_size = face_region.shape[:2]
|
| 154 |
+
|
| 155 |
+
# Ensure RGB format for PIL
|
| 156 |
+
if face_region.shape[2] == 3:
|
| 157 |
+
pil_face = Image.fromarray(face_region)
|
| 158 |
+
else:
|
| 159 |
+
pil_face = Image.fromarray(cv2.cvtColor(face_region, cv2.COLOR_BGR2RGB))
|
| 160 |
+
|
| 161 |
+
# Apply transformations and run model
|
| 162 |
+
input_tensor = self.transform(pil_face).unsqueeze(0)
|
| 163 |
+
if torch.cuda.is_available():
|
| 164 |
+
input_tensor = input_tensor.cuda()
|
| 165 |
+
|
| 166 |
+
with torch.no_grad():
|
| 167 |
+
out = self.model(input_tensor)[0]
|
| 168 |
+
parsing = out.squeeze(0).argmax(0).byte().cpu().numpy()
|
| 169 |
+
|
| 170 |
+
# Resize parsing map back to original size
|
| 171 |
+
parsing = cv2.resize(parsing, (original_face_size[1], original_face_size[0]),
|
| 172 |
+
interpolation=cv2.INTER_NEAREST)
|
| 173 |
+
|
| 174 |
+
# Create mask that keeps only the classes we want
|
| 175 |
+
mask = np.zeros_like(parsing, dtype=np.uint8)
|
| 176 |
+
for cls_id in self.keep_classes:
|
| 177 |
+
mask[parsing == cls_id] = 255
|
| 178 |
+
|
| 179 |
+
# Refine the mask
|
| 180 |
+
kernel = np.ones((3, 3), np.uint8)
|
| 181 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
|
| 182 |
+
|
| 183 |
+
# Create full image mask (initialize with zeros)
|
| 184 |
+
full_mask = np.zeros((h, w), dtype=np.uint8)
|
| 185 |
+
# Place the face mask in the right position
|
| 186 |
+
full_mask[y_min_exp:y_max_exp, x_min_exp:x_max_exp] = mask
|
| 187 |
+
|
| 188 |
+
# Create the RGBA output
|
| 189 |
+
if image.shape[2] == 3: # RGB
|
| 190 |
+
rgba = np.dstack((image, np.zeros((h, w), dtype=np.uint8)))
|
| 191 |
+
# Copy only the face region with its alpha
|
| 192 |
+
rgba[y_min_exp:y_max_exp, x_min_exp:x_max_exp, 3] = mask
|
| 193 |
+
else: # Already RGBA or other format
|
| 194 |
+
rgba = np.dstack((cv2.cvtColor(image, cv2.COLOR_BGR2RGB),
|
| 195 |
+
np.zeros((h, w), dtype=np.uint8)))
|
| 196 |
+
rgba[y_min_exp:y_max_exp, x_min_exp:x_max_exp, 3] = mask
|
| 197 |
+
|
| 198 |
+
return rgba, "Face segmented successfully!"
|
| 199 |
+
|
| 200 |
+
# Streamlit app
|
| 201 |
+
def main():
|
| 202 |
+
st.set_page_config(page_title="Face Segmentation Tool", layout="wide")
|
| 203 |
+
|
| 204 |
+
st.title("Face Segmentation Tool")
|
| 205 |
+
st.markdown("""
|
| 206 |
+
Upload an image to extract the face with a transparent background.
|
| 207 |
+
|
| 208 |
+
## Guidelines:
|
| 209 |
+
- Upload an image with **exactly one face**
|
| 210 |
+
- The face should be clearly visible
|
| 211 |
+
- For best results, use images with good lighting
|
| 212 |
+
""")
|
| 213 |
+
|
| 214 |
+
col1, col2 = st.columns(2)
|
| 215 |
+
|
| 216 |
+
with col1:
|
| 217 |
+
st.header("Input Image")
|
| 218 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
| 219 |
+
|
| 220 |
+
if uploaded_file is not None:
|
| 221 |
+
# Convert to numpy array
|
| 222 |
+
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
| 223 |
+
image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
|
| 224 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 225 |
+
|
| 226 |
+
st.image(image, caption="Uploaded Image", use_container_width=True)
|
| 227 |
+
|
| 228 |
+
if st.button("Segment Face"):
|
| 229 |
+
with st.spinner("Processing..."):
|
| 230 |
+
segmenter = FaceHairSegmenter()
|
| 231 |
+
result, message = segmenter.segment_face_hair(image)
|
| 232 |
+
|
| 233 |
+
with col2:
|
| 234 |
+
st.header("Segmented Result")
|
| 235 |
+
st.image(result, caption="Segmented Face", use_container_width=True)
|
| 236 |
+
st.text(message)
|
| 237 |
+
|
| 238 |
+
# Add download button for the result
|
| 239 |
+
if "No face detected" not in message and "faces detected" not in message:
|
| 240 |
+
# Convert numpy array to PIL Image
|
| 241 |
+
result_img = Image.fromarray(result)
|
| 242 |
+
|
| 243 |
+
# Create a BytesIO object
|
| 244 |
+
from io import BytesIO
|
| 245 |
+
buf = BytesIO()
|
| 246 |
+
result_img.save(buf, format="PNG")
|
| 247 |
+
|
| 248 |
+
# Add download button
|
| 249 |
+
st.download_button(
|
| 250 |
+
label="Download Segmented Face",
|
| 251 |
+
data=buf.getvalue(),
|
| 252 |
+
file_name="segmented_face.png",
|
| 253 |
+
mime="image/png"
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
if __name__ == "__main__":
|
| 257 |
+
main()
|