# # src/config.py # import torch # DATA_PATH = "../data/train-00000-of-00001-20a6e56929a59ecf.parquet" # VOCAB_PATH = "../saved/vocab.json" # MODEL_PATH = "../saved/best_model.pt" # DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # # Training # MAX_SRC_LEN = 30 # max Teluguish chars per word # MAX_TGT_LEN = 30 # max Telugu chars per word (incl , ) # BATCH_SIZE = 256 # NUM_EPOCHS = 15 # LR = 1e-3 # TEACHER_FORCING = 0.5 # # Model sizes # SRC_CHAR_EMB = 64 # ENC_HIDDEN = 128 # GNN output dim # TGT_CHAR_EMB = 128 # DEC_HIDDEN = 256 # LSTM hidden size # GNN_LAYERS = 2 # DROPOUT = 0.2 # src/config.py from pathlib import Path import torch # Base directory = project root (one level above src/) BASE_DIR = Path(__file__).resolve().parent.parent # Paths DATA_PATH = BASE_DIR / "data" / "train-00000-of-00001-20a6e56929a59ecf.parquet" VOCAB_PATH = BASE_DIR / "saved" / "vocab.json" MODEL_PATH = BASE_DIR / "saved" / "model_30_epoch.pt" # Device DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Training / model hyperparams (whatever you already had) MAX_SRC_LEN = 30 MAX_TGT_LEN = 30 BATCH_SIZE = 256 NUM_EPOCHS = 10 LR = 3e-2 TEACHER_FORCING = 0.5 SRC_CHAR_EMB = 64 ENC_HIDDEN = 128 TGT_CHAR_EMB = 128 DEC_HIDDEN = 256 GNN_LAYERS = 2 DROPOUT = 0.2