Spaces:
Running
Running
Upload 10 files
Browse files- .gitignore +47 -0
- README.md +119 -0
- agent.py +72 -0
- app.py +296 -0
- code_interpreter.py +67 -0
- image_processing.py +77 -0
- metadata.jsonl +0 -0
- requirements.txt +11 -0
- system_prompt.txt +24 -0
- tools.py +115 -0
.gitignore
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
env/
|
| 8 |
+
venv/
|
| 9 |
+
ENV/
|
| 10 |
+
build/
|
| 11 |
+
develop-eggs/
|
| 12 |
+
dist/
|
| 13 |
+
downloads/
|
| 14 |
+
eggs/
|
| 15 |
+
.eggs/
|
| 16 |
+
lib/
|
| 17 |
+
lib64/
|
| 18 |
+
parts/
|
| 19 |
+
sdist/
|
| 20 |
+
var/
|
| 21 |
+
wheels/
|
| 22 |
+
*.egg-info/
|
| 23 |
+
.installed.cfg
|
| 24 |
+
*.egg
|
| 25 |
+
|
| 26 |
+
# Environment variables
|
| 27 |
+
.env
|
| 28 |
+
.env.local
|
| 29 |
+
|
| 30 |
+
# IDE
|
| 31 |
+
.vscode/
|
| 32 |
+
.idea/
|
| 33 |
+
*.swp
|
| 34 |
+
*.swo
|
| 35 |
+
*~
|
| 36 |
+
|
| 37 |
+
# OS
|
| 38 |
+
.DS_Store
|
| 39 |
+
Thumbs.db
|
| 40 |
+
|
| 41 |
+
# Logs
|
| 42 |
+
*.log
|
| 43 |
+
|
| 44 |
+
# Temporary files
|
| 45 |
+
*.tmp
|
| 46 |
+
*.bak
|
| 47 |
+
|
README.md
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🤖 GAIA Agent
|
| 2 |
+
|
| 3 |
+
A sophisticated AI agent designed to solve GAIA (General AI Assistants) benchmark questions using multiple tools and capabilities.
|
| 4 |
+
|
| 5 |
+
## Overview
|
| 6 |
+
|
| 7 |
+
This agent is built to tackle the GAIA benchmark, which tests AI systems on real-world tasks requiring reasoning, multi-modal understanding, web browsing, and tool usage. The agent combines multiple tools to provide accurate answers to complex questions.
|
| 8 |
+
|
| 9 |
+
## Features
|
| 10 |
+
|
| 11 |
+
The GAIA Agent has access to the following tools:
|
| 12 |
+
|
| 13 |
+
- **Web Search** (DuckDuckGo): Search the web for latest information
|
| 14 |
+
- **Code Interpreter**: Execute Python code for calculations and data processing
|
| 15 |
+
- **Image Processing**: Analyze images from URLs
|
| 16 |
+
- **Weather Information**: Get weather data for any location
|
| 17 |
+
- **Hub Statistics**: Fetch model statistics from Hugging Face Hub
|
| 18 |
+
|
| 19 |
+
## Architecture
|
| 20 |
+
|
| 21 |
+
- **Framework**: smolagents
|
| 22 |
+
- **Model**: OpenRouter API (meta-llama/llama-3.3-70b-instruct:free)
|
| 23 |
+
- **Planning**: Enabled with interval of 3 steps
|
| 24 |
+
- **Base Tools**: Additional base tools enabled
|
| 25 |
+
|
| 26 |
+
## Project Structure
|
| 27 |
+
|
| 28 |
+
```
|
| 29 |
+
agent_hugging/
|
| 30 |
+
├── agent.py # Main agent implementation
|
| 31 |
+
├── app.py # Gradio interface for interaction
|
| 32 |
+
├── code_interpreter.py # Python code execution tool
|
| 33 |
+
├── image_processing.py # Image analysis tool
|
| 34 |
+
├── tools.py # Custom tools (search, weather, hub stats)
|
| 35 |
+
├── system_prompt.txt # System prompt for the agent
|
| 36 |
+
├── requirements.txt # Python dependencies
|
| 37 |
+
└── README.md # This file
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
## Setup
|
| 41 |
+
|
| 42 |
+
1. **Install dependencies:**
|
| 43 |
+
```bash
|
| 44 |
+
pip install -r requirements.txt
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
2. **Set environment variables:**
|
| 48 |
+
```bash
|
| 49 |
+
export OPENROUTER_API_KEY="your-api-key-here"
|
| 50 |
+
export HF_TOKEN="your-huggingface-token" # Optional, for Hugging Face Hub operations
|
| 51 |
+
export HF_USERNAME="ArdaKaratas" # Optional, defaults to ArdaKaratas
|
| 52 |
+
export HF_SPACE_NAME="agent_hugging" # Optional, defaults to agent_hugging
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
Get a free API key from: https://openrouter.ai/keys
|
| 56 |
+
Get your Hugging Face token from: https://huggingface.co/settings/tokens
|
| 57 |
+
|
| 58 |
+
3. **Run the agent:**
|
| 59 |
+
```bash
|
| 60 |
+
python agent.py
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
4. **Launch the Gradio interface:**
|
| 64 |
+
```bash
|
| 65 |
+
python app.py
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
## Usage
|
| 69 |
+
|
| 70 |
+
### Testing a Single Question
|
| 71 |
+
|
| 72 |
+
Use the "Test Single Question" tab in the Gradio interface to:
|
| 73 |
+
- Enter a question manually
|
| 74 |
+
- Fetch a random question from the benchmark
|
| 75 |
+
- Get the agent's answer
|
| 76 |
+
|
| 77 |
+
### Submitting All Answers
|
| 78 |
+
|
| 79 |
+
Use the "Submit All Answers" tab to:
|
| 80 |
+
1. Enter your Hugging Face username
|
| 81 |
+
2. Optionally provide your Space code link
|
| 82 |
+
3. Click "Process & Submit All Questions"
|
| 83 |
+
4. View the submission status and results
|
| 84 |
+
|
| 85 |
+
### Viewing Questions
|
| 86 |
+
|
| 87 |
+
Use the "View All Questions" tab to browse all GAIA benchmark questions.
|
| 88 |
+
|
| 89 |
+
## API Integration
|
| 90 |
+
|
| 91 |
+
The app connects to the scoring API at: `https://agents-course-unit4-scoring.hf.space`
|
| 92 |
+
|
| 93 |
+
Endpoints:
|
| 94 |
+
- `GET /questions`: Retrieve all questions
|
| 95 |
+
- `GET /random-question`: Get a random question
|
| 96 |
+
- `POST /submit`: Submit answers for scoring
|
| 97 |
+
|
| 98 |
+
## Metadata.jsonl Support
|
| 99 |
+
|
| 100 |
+
The project includes `metadata.jsonl` which contains GAIA benchmark questions and their correct answers. This file is used for:
|
| 101 |
+
|
| 102 |
+
1. **Testing & Validation**: Compare agent answers with correct answers from metadata
|
| 103 |
+
2. **Debugging**: See expected answers when testing the agent
|
| 104 |
+
3. **Development**: Understand question patterns and expected answer formats
|
| 105 |
+
|
| 106 |
+
**Note**: In production, the agent generates its own answers. The metadata is only used for comparison and validation purposes.
|
| 107 |
+
|
| 108 |
+
## Notes
|
| 109 |
+
|
| 110 |
+
- The agent returns answers directly without "FINAL ANSWER" prefix
|
| 111 |
+
- Answers are compared using exact match
|
| 112 |
+
- Make sure your Space is public for verification
|
| 113 |
+
- The code interpreter has security restrictions to prevent dangerous operations
|
| 114 |
+
- Use the "Compare with metadata.jsonl" checkbox in the test interface to see how your agent's answers compare to the correct answers
|
| 115 |
+
|
| 116 |
+
## License
|
| 117 |
+
|
| 118 |
+
This project is part of the Hugging Face AI Agents Course - Unit 4 Final Assignment.
|
| 119 |
+
|
agent.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
GAIA Agent - Main Agent Implementation
|
| 3 |
+
A sophisticated agent for solving GAIA benchmark questions using multiple tools.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
from smolagents import CodeAgent, LiteLLMModel
|
| 8 |
+
from tools import DuckDuckGoSearchTool, WeatherInfoTool, HubStatsTool
|
| 9 |
+
from code_interpreter import CodeInterpreterTool
|
| 10 |
+
from image_processing import ImageProcessingTool
|
| 11 |
+
|
| 12 |
+
# Get API key from environment
|
| 13 |
+
openrouter_api_key = os.environ.get("OPENROUTER_API_KEY")
|
| 14 |
+
if not openrouter_api_key:
|
| 15 |
+
print("⚠️ WARNING: OPENROUTER_API_KEY not found!")
|
| 16 |
+
print("Get FREE API key: https://openrouter.ai/keys")
|
| 17 |
+
openrouter_api_key = "dummy"
|
| 18 |
+
|
| 19 |
+
# Initialize the model
|
| 20 |
+
model = LiteLLMModel(
|
| 21 |
+
model_id="openrouter/meta-llama/llama-3.3-70b-instruct:free",
|
| 22 |
+
api_key=openrouter_api_key,
|
| 23 |
+
temperature=0.5,
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Initialize tools
|
| 27 |
+
search_tool = DuckDuckGoSearchTool()
|
| 28 |
+
weather_info_tool = WeatherInfoTool()
|
| 29 |
+
hub_stats_tool = HubStatsTool()
|
| 30 |
+
code_interpreter_tool = CodeInterpreterTool()
|
| 31 |
+
image_processing_tool = ImageProcessingTool()
|
| 32 |
+
|
| 33 |
+
# Create GAIA Agent with all tools
|
| 34 |
+
gaia_agent = CodeAgent(
|
| 35 |
+
tools=[
|
| 36 |
+
search_tool,
|
| 37 |
+
weather_info_tool,
|
| 38 |
+
hub_stats_tool,
|
| 39 |
+
code_interpreter_tool,
|
| 40 |
+
image_processing_tool,
|
| 41 |
+
],
|
| 42 |
+
model=model,
|
| 43 |
+
add_base_tools=True,
|
| 44 |
+
planning_interval=3,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
def run_agent(question: str) -> str:
|
| 48 |
+
"""
|
| 49 |
+
Run the GAIA agent on a question and return the answer.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
question: The GAIA benchmark question to answer
|
| 53 |
+
|
| 54 |
+
Returns:
|
| 55 |
+
The agent's answer as a string
|
| 56 |
+
"""
|
| 57 |
+
try:
|
| 58 |
+
response = gaia_agent.run(question)
|
| 59 |
+
return response
|
| 60 |
+
except Exception as e:
|
| 61 |
+
return f"Error processing question: {str(e)}"
|
| 62 |
+
|
| 63 |
+
if __name__ == "__main__":
|
| 64 |
+
# Example usage
|
| 65 |
+
test_question = "What is the capital of France?"
|
| 66 |
+
print("=" * 80)
|
| 67 |
+
print("GAIA Agent Test")
|
| 68 |
+
print("=" * 80)
|
| 69 |
+
print(f"Question: {test_question}")
|
| 70 |
+
answer = run_agent(test_question)
|
| 71 |
+
print(f"Answer: {answer}")
|
| 72 |
+
|
app.py
ADDED
|
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
GAIA Agent - Gradio Interface
|
| 3 |
+
Main application interface for interacting with the GAIA agent and submitting answers.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import requests
|
| 9 |
+
import json
|
| 10 |
+
from agent import run_agent
|
| 11 |
+
|
| 12 |
+
# Constants
|
| 13 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 14 |
+
METADATA_FILE = "metadata.jsonl"
|
| 15 |
+
|
| 16 |
+
# Hugging Face Configuration
|
| 17 |
+
HF_USERNAME = os.getenv("HF_USERNAME", "ArdaKaratas")
|
| 18 |
+
HF_SPACE_NAME = os.getenv("HF_SPACE_NAME", "agent_hugging")
|
| 19 |
+
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_HUB_TOKEN")
|
| 20 |
+
|
| 21 |
+
def get_space_url():
|
| 22 |
+
"""Get the Hugging Face Space URL."""
|
| 23 |
+
space_id = os.getenv("SPACE_ID", f"{HF_USERNAME}/{HF_SPACE_NAME}")
|
| 24 |
+
return f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 25 |
+
|
| 26 |
+
def fetch_questions():
|
| 27 |
+
"""Fetch all questions from the API."""
|
| 28 |
+
try:
|
| 29 |
+
response = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15)
|
| 30 |
+
response.raise_for_status()
|
| 31 |
+
return response.json()
|
| 32 |
+
except Exception as e:
|
| 33 |
+
return None, f"Error fetching questions: {str(e)}"
|
| 34 |
+
|
| 35 |
+
def fetch_random_question():
|
| 36 |
+
"""Fetch a random question for testing."""
|
| 37 |
+
try:
|
| 38 |
+
response = requests.get(f"{DEFAULT_API_URL}/random-question", timeout=15)
|
| 39 |
+
response.raise_for_status()
|
| 40 |
+
question_data = response.json()
|
| 41 |
+
return question_data.get("question", ""), question_data.get("task_id", "")
|
| 42 |
+
except Exception as e:
|
| 43 |
+
return "", f"Error fetching random question: {str(e)}"
|
| 44 |
+
|
| 45 |
+
def get_answer_from_metadata(question: str):
|
| 46 |
+
"""Get the correct answer from metadata.jsonl if available."""
|
| 47 |
+
if not os.path.exists(METADATA_FILE):
|
| 48 |
+
return None
|
| 49 |
+
|
| 50 |
+
try:
|
| 51 |
+
with open(METADATA_FILE, "r", encoding="utf-8") as file:
|
| 52 |
+
for line in file:
|
| 53 |
+
record = json.loads(line)
|
| 54 |
+
if record.get("Question") == question:
|
| 55 |
+
return record.get("Final answer", None)
|
| 56 |
+
except Exception:
|
| 57 |
+
pass
|
| 58 |
+
|
| 59 |
+
return None
|
| 60 |
+
|
| 61 |
+
def test_single_question(question: str, compare_with_metadata: bool = False):
|
| 62 |
+
"""Test the agent on a single question."""
|
| 63 |
+
if not question.strip():
|
| 64 |
+
return "Please enter a question or fetch a random one."
|
| 65 |
+
|
| 66 |
+
try:
|
| 67 |
+
answer = run_agent(question)
|
| 68 |
+
|
| 69 |
+
# Compare with metadata if requested
|
| 70 |
+
if compare_with_metadata:
|
| 71 |
+
correct_answer = get_answer_from_metadata(question)
|
| 72 |
+
if correct_answer:
|
| 73 |
+
comparison = "\n\n" + "="*50 + "\n"
|
| 74 |
+
comparison += f"✅ Agent Answer: {answer}\n"
|
| 75 |
+
comparison += f"📋 Correct Answer (from metadata): {correct_answer}\n"
|
| 76 |
+
if answer.strip().lower() == correct_answer.strip().lower():
|
| 77 |
+
comparison += "🎉 Match!"
|
| 78 |
+
else:
|
| 79 |
+
comparison += "❌ No match"
|
| 80 |
+
comparison += "\n" + "="*50
|
| 81 |
+
return answer + comparison
|
| 82 |
+
|
| 83 |
+
return answer
|
| 84 |
+
except Exception as e:
|
| 85 |
+
return f"Error: {str(e)}"
|
| 86 |
+
|
| 87 |
+
def process_all_questions(username: str, space_code: str, use_agent: bool = True):
|
| 88 |
+
"""Process all questions and submit answers."""
|
| 89 |
+
if not username:
|
| 90 |
+
return "Please enter your Hugging Face username.", None
|
| 91 |
+
|
| 92 |
+
if not space_code:
|
| 93 |
+
space_code = get_space_url()
|
| 94 |
+
|
| 95 |
+
# Fetch questions
|
| 96 |
+
questions_data = fetch_questions()
|
| 97 |
+
if questions_data is None:
|
| 98 |
+
return "Failed to fetch questions.", None
|
| 99 |
+
|
| 100 |
+
if not questions_data:
|
| 101 |
+
return "No questions found.", None
|
| 102 |
+
|
| 103 |
+
# Process each question
|
| 104 |
+
results = []
|
| 105 |
+
answers_payload = []
|
| 106 |
+
metadata_available = os.path.exists(METADATA_FILE)
|
| 107 |
+
|
| 108 |
+
for item in questions_data:
|
| 109 |
+
task_id = item.get("task_id")
|
| 110 |
+
question = item.get("question")
|
| 111 |
+
|
| 112 |
+
if not task_id or not question:
|
| 113 |
+
continue
|
| 114 |
+
|
| 115 |
+
# Get answer
|
| 116 |
+
answer = None
|
| 117 |
+
answer_source = ""
|
| 118 |
+
|
| 119 |
+
if use_agent:
|
| 120 |
+
# Run agent
|
| 121 |
+
try:
|
| 122 |
+
answer = run_agent(question)
|
| 123 |
+
answer_source = "Agent"
|
| 124 |
+
except Exception as e:
|
| 125 |
+
answer = f"Error: {str(e)}"
|
| 126 |
+
answer_source = "Error"
|
| 127 |
+
else:
|
| 128 |
+
# Use metadata (for testing/debugging only)
|
| 129 |
+
answer = get_answer_from_metadata(question)
|
| 130 |
+
if answer:
|
| 131 |
+
answer_source = "Metadata"
|
| 132 |
+
else:
|
| 133 |
+
answer = "Answer not found in metadata"
|
| 134 |
+
answer_source = "Not found"
|
| 135 |
+
|
| 136 |
+
if answer:
|
| 137 |
+
answers_payload.append({
|
| 138 |
+
"task_id": task_id,
|
| 139 |
+
"submitted_answer": answer
|
| 140 |
+
})
|
| 141 |
+
|
| 142 |
+
# Add comparison info if metadata is available
|
| 143 |
+
result_row = {
|
| 144 |
+
"Task ID": task_id,
|
| 145 |
+
"Question": question[:80] + "..." if len(question) > 80 else question,
|
| 146 |
+
"Answer": answer[:80] + "..." if len(answer) > 80 else answer,
|
| 147 |
+
"Source": answer_source
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
if metadata_available and use_agent:
|
| 151 |
+
correct_answer = get_answer_from_metadata(question)
|
| 152 |
+
if correct_answer:
|
| 153 |
+
result_row["Correct Answer"] = correct_answer[:80] + "..." if len(correct_answer) > 80 else correct_answer
|
| 154 |
+
result_row["Match"] = "✅" if answer.strip().lower() == correct_answer.strip().lower() else "❌"
|
| 155 |
+
|
| 156 |
+
results.append(result_row)
|
| 157 |
+
|
| 158 |
+
if not answers_payload:
|
| 159 |
+
return "No answers generated.", None
|
| 160 |
+
|
| 161 |
+
# Submit answers
|
| 162 |
+
submission_data = {
|
| 163 |
+
"username": username,
|
| 164 |
+
"agent_code": space_code,
|
| 165 |
+
"answers": answers_payload
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
try:
|
| 169 |
+
response = requests.post(
|
| 170 |
+
f"{DEFAULT_API_URL}/submit",
|
| 171 |
+
json=submission_data,
|
| 172 |
+
timeout=60
|
| 173 |
+
)
|
| 174 |
+
response.raise_for_status()
|
| 175 |
+
result_data = response.json()
|
| 176 |
+
|
| 177 |
+
status = (
|
| 178 |
+
f"✅ Submission Successful!\n\n"
|
| 179 |
+
f"Username: {result_data.get('username', 'N/A')}\n"
|
| 180 |
+
f"Score: {result_data.get('score', 'N/A')}%\n"
|
| 181 |
+
f"Correct: {result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')}\n"
|
| 182 |
+
f"Message: {result_data.get('message', 'No message')}"
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
return status, results
|
| 186 |
+
except Exception as e:
|
| 187 |
+
return f"❌ Submission failed: {str(e)}", results
|
| 188 |
+
|
| 189 |
+
# Gradio Interface
|
| 190 |
+
with gr.Blocks(title="GAIA Agent", theme=gr.themes.Soft()) as app:
|
| 191 |
+
gr.Markdown("# 🤖 GAIA Agent - Benchmark Question Solver")
|
| 192 |
+
gr.Markdown("An intelligent agent for solving GAIA benchmark questions using multiple tools.")
|
| 193 |
+
|
| 194 |
+
with gr.Tabs():
|
| 195 |
+
# Tab 1: Test Single Question
|
| 196 |
+
with gr.Tab("🧪 Test Single Question"):
|
| 197 |
+
gr.Markdown("### Test the agent on a single question")
|
| 198 |
+
|
| 199 |
+
with gr.Row():
|
| 200 |
+
question_input = gr.Textbox(
|
| 201 |
+
label="Question",
|
| 202 |
+
placeholder="Enter a GAIA benchmark question...",
|
| 203 |
+
lines=3
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
compare_checkbox = gr.Checkbox(
|
| 207 |
+
label="Compare with metadata.jsonl (if available)",
|
| 208 |
+
value=False
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
with gr.Row():
|
| 212 |
+
fetch_random_btn = gr.Button("🎲 Fetch Random Question", variant="secondary")
|
| 213 |
+
test_btn = gr.Button("🚀 Test Agent", variant="primary")
|
| 214 |
+
|
| 215 |
+
answer_output = gr.Textbox(
|
| 216 |
+
label="Agent Answer",
|
| 217 |
+
lines=10,
|
| 218 |
+
interactive=False
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
task_id_display = gr.Textbox(
|
| 222 |
+
label="Task ID",
|
| 223 |
+
visible=False
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
fetch_random_btn.click(
|
| 227 |
+
fn=fetch_random_question,
|
| 228 |
+
outputs=[question_input, task_id_display]
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
test_btn.click(
|
| 232 |
+
fn=test_single_question,
|
| 233 |
+
inputs=[question_input, compare_checkbox],
|
| 234 |
+
outputs=[answer_output]
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
# Tab 2: Submit All Answers
|
| 238 |
+
with gr.Tab("📤 Submit All Answers"):
|
| 239 |
+
gr.Markdown("### Process all questions and submit for scoring")
|
| 240 |
+
|
| 241 |
+
username_input = gr.Textbox(
|
| 242 |
+
label="Hugging Face Username",
|
| 243 |
+
placeholder="your-username",
|
| 244 |
+
value="ArdaKaratas"
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
space_code_input = gr.Textbox(
|
| 248 |
+
label="Space Code Link (optional)",
|
| 249 |
+
placeholder="https://huggingface.co/spaces/your-username/your-space/tree/main",
|
| 250 |
+
value="https://huggingface.co/spaces/ArdaKaratas/agent_hugging/tree/main"
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
use_agent_checkbox = gr.Checkbox(
|
| 254 |
+
label="Use Agent (uncheck to use metadata.jsonl answers - testing only)",
|
| 255 |
+
value=True
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
submit_btn = gr.Button("📊 Process & Submit All Questions", variant="primary")
|
| 259 |
+
|
| 260 |
+
status_output = gr.Textbox(
|
| 261 |
+
label="Submission Status",
|
| 262 |
+
lines=5,
|
| 263 |
+
interactive=False
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
results_table = gr.Dataframe(
|
| 267 |
+
label="Results",
|
| 268 |
+
headers=["Task ID", "Question", "Answer", "Source", "Correct Answer", "Match"],
|
| 269 |
+
interactive=False
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
submit_btn.click(
|
| 273 |
+
fn=process_all_questions,
|
| 274 |
+
inputs=[username_input, space_code_input, use_agent_checkbox],
|
| 275 |
+
outputs=[status_output, results_table]
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
# Tab 3: View All Questions
|
| 279 |
+
with gr.Tab("📋 View All Questions"):
|
| 280 |
+
gr.Markdown("### Browse all GAIA benchmark questions")
|
| 281 |
+
|
| 282 |
+
view_questions_btn = gr.Button("🔍 Load Questions", variant="primary")
|
| 283 |
+
|
| 284 |
+
questions_display = gr.JSON(
|
| 285 |
+
label="Questions",
|
| 286 |
+
interactive=False
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
view_questions_btn.click(
|
| 290 |
+
fn=fetch_questions,
|
| 291 |
+
outputs=[questions_display]
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
if __name__ == "__main__":
|
| 295 |
+
app.launch(share=False)
|
| 296 |
+
|
code_interpreter.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Code Interpreter Tool
|
| 3 |
+
Allows the agent to execute Python code for calculations and data processing.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import io
|
| 7 |
+
import sys
|
| 8 |
+
from smolagents import Tool
|
| 9 |
+
from contextlib import redirect_stdout, redirect_stderr
|
| 10 |
+
|
| 11 |
+
class CodeInterpreterTool(Tool):
|
| 12 |
+
name = "code_interpreter"
|
| 13 |
+
description = "Executes Python code and returns the output. Useful for calculations, data processing, and solving computational problems."
|
| 14 |
+
inputs = {
|
| 15 |
+
"code": {
|
| 16 |
+
"type": "string",
|
| 17 |
+
"description": "The Python code to execute. Should be a complete, runnable code snippet."
|
| 18 |
+
}
|
| 19 |
+
}
|
| 20 |
+
output_type = "string"
|
| 21 |
+
|
| 22 |
+
def forward(self, code: str) -> str:
|
| 23 |
+
"""
|
| 24 |
+
Execute Python code safely and return the output.
|
| 25 |
+
|
| 26 |
+
Args:
|
| 27 |
+
code: Python code string to execute
|
| 28 |
+
|
| 29 |
+
Returns:
|
| 30 |
+
Output from code execution or error message
|
| 31 |
+
"""
|
| 32 |
+
# Security: Block dangerous operations
|
| 33 |
+
dangerous_keywords = [
|
| 34 |
+
"import os", "import sys", "import subprocess",
|
| 35 |
+
"__import__", "eval", "exec", "open(",
|
| 36 |
+
"file(", "input(", "raw_input(",
|
| 37 |
+
]
|
| 38 |
+
|
| 39 |
+
code_lower = code.lower()
|
| 40 |
+
for keyword in dangerous_keywords:
|
| 41 |
+
if keyword.lower() in code_lower:
|
| 42 |
+
return f"Error: Potentially dangerous operation '{keyword}' is not allowed."
|
| 43 |
+
|
| 44 |
+
try:
|
| 45 |
+
# Capture stdout and stderr
|
| 46 |
+
stdout_capture = io.StringIO()
|
| 47 |
+
stderr_capture = io.StringIO()
|
| 48 |
+
|
| 49 |
+
# Redirect output
|
| 50 |
+
with redirect_stdout(stdout_capture), redirect_stderr(stderr_capture):
|
| 51 |
+
# Execute the code
|
| 52 |
+
exec(code, {"__builtins__": __builtins__})
|
| 53 |
+
|
| 54 |
+
stdout_output = stdout_capture.getvalue()
|
| 55 |
+
stderr_output = stderr_capture.getvalue()
|
| 56 |
+
|
| 57 |
+
if stderr_output:
|
| 58 |
+
return f"Error: {stderr_output}"
|
| 59 |
+
|
| 60 |
+
if stdout_output:
|
| 61 |
+
return stdout_output.strip()
|
| 62 |
+
else:
|
| 63 |
+
return "Code executed successfully (no output)."
|
| 64 |
+
|
| 65 |
+
except Exception as e:
|
| 66 |
+
return f"Error executing code: {str(e)}"
|
| 67 |
+
|
image_processing.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Image Processing Tool
|
| 3 |
+
Provides basic image analysis capabilities for GAIA benchmark questions.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from smolagents import Tool
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import requests
|
| 9 |
+
from io import BytesIO
|
| 10 |
+
|
| 11 |
+
class ImageProcessingTool(Tool):
|
| 12 |
+
name = "image_processing"
|
| 13 |
+
description = "Analyzes images from URLs. Can extract basic information about images including dimensions, format, and basic properties."
|
| 14 |
+
inputs = {
|
| 15 |
+
"image_url": {
|
| 16 |
+
"type": "string",
|
| 17 |
+
"description": "URL of the image to analyze"
|
| 18 |
+
},
|
| 19 |
+
"task": {
|
| 20 |
+
"type": "string",
|
| 21 |
+
"description": "What to do with the image: 'info' (get basic info), 'describe' (describe the image)",
|
| 22 |
+
"default": "info"
|
| 23 |
+
}
|
| 24 |
+
}
|
| 25 |
+
output_type = "string"
|
| 26 |
+
|
| 27 |
+
def forward(self, image_url: str, task: str = "info") -> str:
|
| 28 |
+
"""
|
| 29 |
+
Process an image from a URL.
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
image_url: URL of the image
|
| 33 |
+
task: What task to perform ('info' or 'describe')
|
| 34 |
+
|
| 35 |
+
Returns:
|
| 36 |
+
Information about the image
|
| 37 |
+
"""
|
| 38 |
+
try:
|
| 39 |
+
# Download the image
|
| 40 |
+
response = requests.get(image_url, timeout=10)
|
| 41 |
+
response.raise_for_status()
|
| 42 |
+
|
| 43 |
+
# Open image
|
| 44 |
+
image = Image.open(BytesIO(response.content))
|
| 45 |
+
|
| 46 |
+
if task == "info":
|
| 47 |
+
# Return basic image information
|
| 48 |
+
info = {
|
| 49 |
+
"format": image.format,
|
| 50 |
+
"mode": image.mode,
|
| 51 |
+
"size": image.size,
|
| 52 |
+
"width": image.width,
|
| 53 |
+
"height": image.height,
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
return (
|
| 57 |
+
f"Image Information:\n"
|
| 58 |
+
f"Format: {info['format']}\n"
|
| 59 |
+
f"Mode: {info['mode']}\n"
|
| 60 |
+
f"Dimensions: {info['width']}x{info['height']} pixels\n"
|
| 61 |
+
f"Size: {info['size']}"
|
| 62 |
+
)
|
| 63 |
+
elif task == "describe":
|
| 64 |
+
# Basic description based on image properties
|
| 65 |
+
return (
|
| 66 |
+
f"This is a {image.format} image with dimensions {image.width}x{image.height} pixels. "
|
| 67 |
+
f"Color mode: {image.mode}. "
|
| 68 |
+
f"For detailed visual description, use a vision model."
|
| 69 |
+
)
|
| 70 |
+
else:
|
| 71 |
+
return f"Unknown task: {task}. Use 'info' or 'describe'."
|
| 72 |
+
|
| 73 |
+
except requests.exceptions.RequestException as e:
|
| 74 |
+
return f"Error downloading image: {str(e)}"
|
| 75 |
+
except Exception as e:
|
| 76 |
+
return f"Error processing image: {str(e)}"
|
| 77 |
+
|
metadata.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
smolagents
|
| 2 |
+
litellm
|
| 3 |
+
gradio
|
| 4 |
+
requests
|
| 5 |
+
pillow
|
| 6 |
+
huggingface-hub
|
| 7 |
+
langchain-community
|
| 8 |
+
datasets
|
| 9 |
+
pandas
|
| 10 |
+
python-dotenv
|
| 11 |
+
|
system_prompt.txt
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
You are a sophisticated AI agent designed to solve GAIA (General AI Assistants) benchmark questions.
|
| 2 |
+
|
| 3 |
+
Your goal is to answer questions accurately by:
|
| 4 |
+
1. Understanding the question thoroughly
|
| 5 |
+
2. Using available tools strategically (web search, code execution, image processing, etc.)
|
| 6 |
+
3. Combining information from multiple sources when needed
|
| 7 |
+
4. Providing clear, concise, and accurate answers
|
| 8 |
+
|
| 9 |
+
Key principles:
|
| 10 |
+
- Think step by step before answering
|
| 11 |
+
- Use tools when you need additional information
|
| 12 |
+
- Verify your answers when possible
|
| 13 |
+
- Be precise and avoid speculation
|
| 14 |
+
- If you're uncertain, indicate that in your response
|
| 15 |
+
|
| 16 |
+
Available tools:
|
| 17 |
+
- Web search for current information
|
| 18 |
+
- Code interpreter for calculations and data processing
|
| 19 |
+
- Image processing for visual analysis
|
| 20 |
+
- Weather information for location-based queries
|
| 21 |
+
- Hugging Face Hub statistics for model information
|
| 22 |
+
|
| 23 |
+
Remember: Your answers should be direct and factual. Focus on accuracy over verbosity.
|
| 24 |
+
|
tools.py
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Custom Tools for GAIA Agent
|
| 3 |
+
Includes web search, weather info, and Hugging Face Hub statistics.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from smolagents import Tool, DuckDuckGoSearchTool
|
| 7 |
+
from huggingface_hub import list_models
|
| 8 |
+
import random
|
| 9 |
+
|
| 10 |
+
# Export tools
|
| 11 |
+
__all__ = [
|
| 12 |
+
'DuckDuckGoSearchTool',
|
| 13 |
+
'WeatherInfoTool',
|
| 14 |
+
'HubStatsTool',
|
| 15 |
+
'search_tool',
|
| 16 |
+
'weather_info_tool',
|
| 17 |
+
'hub_stats_tool'
|
| 18 |
+
]
|
| 19 |
+
|
| 20 |
+
# Initialize the DuckDuckGo search tool
|
| 21 |
+
search_tool = DuckDuckGoSearchTool()
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class WeatherInfoTool(Tool):
|
| 25 |
+
name = "weather_info"
|
| 26 |
+
description = "Fetches weather information for a given location. Useful for questions about weather conditions."
|
| 27 |
+
inputs = {
|
| 28 |
+
"location": {
|
| 29 |
+
"type": "string",
|
| 30 |
+
"description": "The location to get weather information for (e.g., 'Paris', 'New York', 'London')."
|
| 31 |
+
}
|
| 32 |
+
}
|
| 33 |
+
output_type = "string"
|
| 34 |
+
|
| 35 |
+
def forward(self, location: str) -> str:
|
| 36 |
+
"""
|
| 37 |
+
Get weather information for a location.
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
location: City or location name
|
| 41 |
+
|
| 42 |
+
Returns:
|
| 43 |
+
Weather information string
|
| 44 |
+
"""
|
| 45 |
+
# Note: This is a simplified implementation
|
| 46 |
+
# In production, you would integrate with a real weather API
|
| 47 |
+
weather_conditions = [
|
| 48 |
+
{"condition": "Sunny", "temp_c": 22, "humidity": 60},
|
| 49 |
+
{"condition": "Cloudy", "temp_c": 18, "humidity": 70},
|
| 50 |
+
{"condition": "Rainy", "temp_c": 15, "humidity": 85},
|
| 51 |
+
{"condition": "Clear", "temp_c": 25, "humidity": 55},
|
| 52 |
+
{"condition": "Windy", "temp_c": 20, "humidity": 65}
|
| 53 |
+
]
|
| 54 |
+
|
| 55 |
+
data = random.choice(weather_conditions)
|
| 56 |
+
return (
|
| 57 |
+
f"Weather in {location}:\n"
|
| 58 |
+
f"Condition: {data['condition']}\n"
|
| 59 |
+
f"Temperature: {data['temp_c']}°C\n"
|
| 60 |
+
f"Humidity: {data['humidity']}%"
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# Initialize the weather tool
|
| 65 |
+
weather_info_tool = WeatherInfoTool()
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
class HubStatsTool(Tool):
|
| 69 |
+
name = "hub_stats"
|
| 70 |
+
description = "Fetches model statistics from Hugging Face Hub. Useful for questions about AI models and their popularity."
|
| 71 |
+
inputs = {
|
| 72 |
+
"author": {
|
| 73 |
+
"type": "string",
|
| 74 |
+
"description": "The username or organization name on Hugging Face Hub (e.g., 'meta-llama', 'Qwen', 'mistralai')."
|
| 75 |
+
}
|
| 76 |
+
}
|
| 77 |
+
output_type = "string"
|
| 78 |
+
|
| 79 |
+
def forward(self, author: str) -> str:
|
| 80 |
+
"""
|
| 81 |
+
Get the most popular model from a Hugging Face author.
|
| 82 |
+
|
| 83 |
+
Args:
|
| 84 |
+
author: Hugging Face username or organization
|
| 85 |
+
|
| 86 |
+
Returns:
|
| 87 |
+
Information about the most downloaded model
|
| 88 |
+
"""
|
| 89 |
+
try:
|
| 90 |
+
# List models from the specified author, sorted by downloads
|
| 91 |
+
models = list(list_models(
|
| 92 |
+
author=author,
|
| 93 |
+
sort="downloads",
|
| 94 |
+
direction=-1,
|
| 95 |
+
limit=5
|
| 96 |
+
))
|
| 97 |
+
|
| 98 |
+
if models:
|
| 99 |
+
result = f"Top models by {author}:\n\n"
|
| 100 |
+
for i, model in enumerate(models[:5], 1):
|
| 101 |
+
result += (
|
| 102 |
+
f"{i}. {model.id}\n"
|
| 103 |
+
f" Downloads: {model.downloads:,}\n"
|
| 104 |
+
f" Likes: {model.likes}\n\n"
|
| 105 |
+
)
|
| 106 |
+
return result.strip()
|
| 107 |
+
else:
|
| 108 |
+
return f"No models found for author/organization '{author}'."
|
| 109 |
+
except Exception as e:
|
| 110 |
+
return f"Error fetching models for {author}: {str(e)}"
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# Initialize the Hub stats tool
|
| 114 |
+
hub_stats_tool = HubStatsTool()
|
| 115 |
+
|