Update app.py
Browse files
app.py
CHANGED
|
@@ -1,65 +1,22 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import os
|
| 3 |
import requests
|
| 4 |
-
|
|
|
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
-
#from pydub.playback import Audio
|
| 7 |
from pydub import AudioSegment
|
| 8 |
-
|
| 9 |
import IPython
|
| 10 |
import soundfile as sf
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
# From transformers import BertModel, BertTokenizer
|
| 18 |
-
from transformers import load_tool
|
| 19 |
-
#from transformers import HfAgent, load_tool
|
| 20 |
|
| 21 |
-
import torch
|
| 22 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, Agent, LocalAgent
|
| 23 |
-
|
| 24 |
-
# checkpoint = "THUDM/agentlm-7b"
|
| 25 |
-
# model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
|
| 26 |
-
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 27 |
-
|
| 28 |
-
# agent = LocalAgent(model, tokenizer)
|
| 29 |
-
# agent.run("Draw me a picture of rivers and lakes.")
|
| 30 |
-
|
| 31 |
-
# print(agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!"))
|
| 32 |
-
|
| 33 |
-
# Load tools
|
| 34 |
-
random_character_tool = load_tool("Chris4K/random-character-tool")
|
| 35 |
-
text_generation_tool = load_tool("Chris4K/text-generation-tool")
|
| 36 |
-
#sentiment_tool = load_tool("Chris4K/sentiment-tool")
|
| 37 |
-
token_counter_tool = load_tool("Chris4K/token-counter-tool")
|
| 38 |
-
most_downloaded_model = load_tool("Chris4K/most-downloaded-model")
|
| 39 |
-
#rag_tool = load_tool("Chris4K/rag-tool")
|
| 40 |
-
word_counter_tool = load_tool("Chris4K/word-counter-tool")
|
| 41 |
-
sentence_counter_tool = load_tool("Chris4K/sentence-counter-tool")
|
| 42 |
-
emojify_text_tool = load_tool("Chris4K/EmojifyTextTool")
|
| 43 |
-
namedEntityRecognitionTool = load_tool("Chris4K/NamedEntityRecognitionTool")
|
| 44 |
-
textDownloadTool = load_tool("Chris4K/TextDownloadTool")
|
| 45 |
-
sourcecode_retriever_tool = load_tool("Chris4K/source-code-retriever-tool")
|
| 46 |
-
|
| 47 |
-
text_to_image = load_tool("Chris4K/text-to-image")
|
| 48 |
-
text_to_video = load_tool("Chris4K/text-to-video")
|
| 49 |
-
image_transformation = load_tool("Chris4K/image-transformation")
|
| 50 |
-
latent_upscaler_tool = load_tool("Chris4K/latent-upscaler-tool")
|
| 51 |
-
|
| 52 |
-
tools = [random_character_tool, text_generation_tool,
|
| 53 |
-
#sentiment_tool,
|
| 54 |
-
token_counter_tool, most_downloaded_model,
|
| 55 |
-
word_counter_tool, sentence_counter_tool, emojify_text_tool , namedEntityRecognitionTool, sourcecode_retriever_tool,
|
| 56 |
-
text_to_image, text_to_video, image_transformation, latent_upscaler_tool ]
|
| 57 |
-
|
| 58 |
-
# Define the custom HfAgent class with token and input_params for e.g max_new_token
|
| 59 |
class CustomHfAgent(Agent):
|
| 60 |
-
def __init__(
|
| 61 |
-
self, url_endpoint, token=os.environ['HF_token'], chat_prompt_template=None, run_prompt_template=None, additional_tools=None, input_params=None
|
| 62 |
-
):
|
| 63 |
super().__init__(
|
| 64 |
chat_prompt_template=chat_prompt_template,
|
| 65 |
run_prompt_template=run_prompt_template,
|
|
@@ -71,17 +28,12 @@ class CustomHfAgent(Agent):
|
|
| 71 |
|
| 72 |
def generate_one(self, prompt, stop):
|
| 73 |
headers = {"Authorization": self.token}
|
| 74 |
-
# Use the value from input_params or a default value if not provided
|
| 75 |
max_new_tokens = self.input_params.get("max_new_tokens", 192)
|
| 76 |
-
|
| 77 |
-
# Set padding and truncation options
|
| 78 |
parameters = {"max_new_tokens": max_new_tokens, "return_full_text": False, "stop": stop, "padding": True, "truncation": True}
|
| 79 |
-
|
| 80 |
inputs = {
|
| 81 |
"inputs": prompt,
|
| 82 |
"parameters": parameters,
|
| 83 |
}
|
| 84 |
-
|
| 85 |
response = requests.post(self.url_endpoint, json=inputs, headers=headers)
|
| 86 |
|
| 87 |
if response.status_code == 429:
|
|
@@ -92,79 +44,67 @@ class CustomHfAgent(Agent):
|
|
| 92 |
raise ValueError(f"Errors {inputs} {response.status_code}: {response.json()}")
|
| 93 |
print(response)
|
| 94 |
result = response.json()[0]["generated_text"]
|
| 95 |
-
# Inference API returns the stop sequence
|
| 96 |
for stop_seq in stop:
|
| 97 |
if result.endswith(stop_seq):
|
| 98 |
return result[: -len(stop_seq)]
|
| 99 |
return result
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
# Define the callback function to handle the form submission
|
| 104 |
-
def handle_submission():
|
| 105 |
-
selected_tools = [tools[idx] for idx, checkbox in enumerate(tool_checkboxes) if checkbox]
|
| 106 |
-
print(selected_tools)
|
| 107 |
-
# Initialize the agent
|
| 108 |
agent = CustomHfAgent(
|
| 109 |
-
|
| 110 |
-
# codellama/CodeLlama-7b-Instruct-hf # WizardLM/WizardCoder-Python-34B-V1.0 # deepseek-ai/deepseek-coder-6.7b-instruct # mistralai/Mixtral-8x7B-v0.1 # bigscience/bloom
|
| 111 |
-
url_endpoint="https://api-inference.huggingface.co/models/bigcode/starcoder", #
|
| 112 |
token=os.environ['HF_token'],
|
| 113 |
additional_tools=selected_tools,
|
| 114 |
input_params={"max_new_tokens": 192},
|
| 115 |
)
|
| 116 |
-
#agent.tools = selected_tools
|
| 117 |
|
| 118 |
response = agent.run(user_message)
|
| 119 |
|
| 120 |
print("Agent Response\n {}".format(response))
|
| 121 |
-
|
| 122 |
-
return response
|
| 123 |
|
| 124 |
-
|
| 125 |
-
#if submit_button:
|
| 126 |
-
# handle_submission()
|
| 127 |
-
#################
|
| 128 |
|
| 129 |
-
######
|
| 130 |
-
|
| 131 |
st.title("Hugging Face Agent and tools")
|
| 132 |
|
| 133 |
-
# Initialize chat history
|
| 134 |
if "messages" not in st.session_state:
|
| 135 |
st.session_state.messages = []
|
| 136 |
|
| 137 |
-
# Display chat messages from history on app rerun
|
| 138 |
for message in st.session_state.messages:
|
| 139 |
with st.chat_message(message["role"]):
|
| 140 |
st.markdown(message["content"])
|
| 141 |
-
|
| 142 |
-
# Checkboxes for the tools to be used by the agent
|
| 143 |
-
tool_checkboxes = [st.checkbox(f"{tool.name} --- {tool.description} ") for tool in tools]
|
| 144 |
|
| 145 |
-
|
|
|
|
| 146 |
with st.chat_message("assistant"):
|
| 147 |
st.markdown("Hello there! How can I assist you today?")
|
| 148 |
-
|
| 149 |
-
# Input field for the user's message
|
| 150 |
-
#user_message = st.chat_input("Enter message")
|
| 151 |
|
| 152 |
-
# React to user input
|
| 153 |
if user_message := st.chat_input("Enter message"):
|
| 154 |
-
# Display user message in chat message container
|
| 155 |
st.chat_message("user").markdown(user_message)
|
| 156 |
-
# Add user message to chat history
|
| 157 |
st.session_state.messages.append({"role": "user", "content": user_message})
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
with st.chat_message("assistant"):
|
| 163 |
if response is None:
|
| 164 |
st.warning("The agent's response is None. Please try again.")
|
|
|
|
|
|
|
| 165 |
elif isinstance(response, Image.Image):
|
| 166 |
st.image(response)
|
| 167 |
-
# elif hasattr(response, 'audio'):
|
| 168 |
elif "audio" in str(response):
|
| 169 |
audio_data = base64.b64decode(response.split(",")[1])
|
| 170 |
audio = AudioSegment.from_file(io.BytesIO(audio_data))
|
|
@@ -175,23 +115,7 @@ if user_message := st.chat_input("Enter message"):
|
|
| 175 |
st.markdown(response)
|
| 176 |
elif isinstance(response, int):
|
| 177 |
st.markdown(response)
|
| 178 |
-
#elif "text" in response:
|
| 179 |
-
# st.markdown(response)
|
| 180 |
else:
|
| 181 |
st.warning("Unrecognized response type. Please try again.")
|
| 182 |
|
| 183 |
-
|
| 184 |
-
# Display assistant response in chat message container
|
| 185 |
-
#with st.chat_message("assistant"):
|
| 186 |
-
# st.markdown(response)
|
| 187 |
-
# Add assistant response to chat history
|
| 188 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
# Submit button
|
| 192 |
-
#submit_button = st.button("Submit")
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import os
|
| 3 |
import requests
|
| 4 |
+
import base64
|
| 5 |
+
import io
|
| 6 |
+
import time
|
| 7 |
from PIL import Image
|
|
|
|
| 8 |
from pydub import AudioSegment
|
|
|
|
| 9 |
import IPython
|
| 10 |
import soundfile as sf
|
| 11 |
+
from transformers import load_tool, Agent
|
| 12 |
+
import torch
|
| 13 |
|
| 14 |
+
class ToolLoader:
|
| 15 |
+
def __init__(self, tool_names):
|
| 16 |
+
self.tools = [load_tool(tool_name) for tool_name in tool_names]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
class CustomHfAgent(Agent):
|
| 19 |
+
def __init__(self, url_endpoint, token, chat_prompt_template=None, run_prompt_template=None, additional_tools=None, input_params=None):
|
|
|
|
|
|
|
| 20 |
super().__init__(
|
| 21 |
chat_prompt_template=chat_prompt_template,
|
| 22 |
run_prompt_template=run_prompt_template,
|
|
|
|
| 28 |
|
| 29 |
def generate_one(self, prompt, stop):
|
| 30 |
headers = {"Authorization": self.token}
|
|
|
|
| 31 |
max_new_tokens = self.input_params.get("max_new_tokens", 192)
|
|
|
|
|
|
|
| 32 |
parameters = {"max_new_tokens": max_new_tokens, "return_full_text": False, "stop": stop, "padding": True, "truncation": True}
|
|
|
|
| 33 |
inputs = {
|
| 34 |
"inputs": prompt,
|
| 35 |
"parameters": parameters,
|
| 36 |
}
|
|
|
|
| 37 |
response = requests.post(self.url_endpoint, json=inputs, headers=headers)
|
| 38 |
|
| 39 |
if response.status_code == 429:
|
|
|
|
| 44 |
raise ValueError(f"Errors {inputs} {response.status_code}: {response.json()}")
|
| 45 |
print(response)
|
| 46 |
result = response.json()[0]["generated_text"]
|
|
|
|
| 47 |
for stop_seq in stop:
|
| 48 |
if result.endswith(stop_seq):
|
| 49 |
return result[: -len(stop_seq)]
|
| 50 |
return result
|
| 51 |
|
| 52 |
+
def load_tools(tool_names):
|
| 53 |
+
return [load_tool(tool_name) for tool_name in tool_names]
|
| 54 |
+
|
| 55 |
+
# Define the tool names to load
|
| 56 |
+
tool_names = [
|
| 57 |
+
"Chris4K/random-character-tool",
|
| 58 |
+
"Chris4K/text-generation-tool",
|
| 59 |
+
# Add other tool names as needed
|
| 60 |
+
]
|
| 61 |
+
|
| 62 |
+
# Create tool loader instance
|
| 63 |
+
tool_loader = ToolLoader(tool_names)
|
| 64 |
+
|
| 65 |
# Define the callback function to handle the form submission
|
| 66 |
+
def handle_submission(user_message, selected_tools):
|
|
|
|
|
|
|
|
|
|
| 67 |
agent = CustomHfAgent(
|
| 68 |
+
url_endpoint="https://api-inference.huggingface.co/models/bigcode/starcoder",
|
|
|
|
|
|
|
| 69 |
token=os.environ['HF_token'],
|
| 70 |
additional_tools=selected_tools,
|
| 71 |
input_params={"max_new_tokens": 192},
|
| 72 |
)
|
|
|
|
| 73 |
|
| 74 |
response = agent.run(user_message)
|
| 75 |
|
| 76 |
print("Agent Response\n {}".format(response))
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
return response
|
|
|
|
|
|
|
|
|
|
| 79 |
|
|
|
|
|
|
|
| 80 |
st.title("Hugging Face Agent and tools")
|
| 81 |
|
|
|
|
| 82 |
if "messages" not in st.session_state:
|
| 83 |
st.session_state.messages = []
|
| 84 |
|
|
|
|
| 85 |
for message in st.session_state.messages:
|
| 86 |
with st.chat_message(message["role"]):
|
| 87 |
st.markdown(message["content"])
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
+
tool_checkboxes = [st.checkbox(f"{tool.name} --- {tool.description} ") for tool in tool_loader.tools]
|
| 90 |
+
|
| 91 |
with st.chat_message("assistant"):
|
| 92 |
st.markdown("Hello there! How can I assist you today?")
|
|
|
|
|
|
|
|
|
|
| 93 |
|
|
|
|
| 94 |
if user_message := st.chat_input("Enter message"):
|
|
|
|
| 95 |
st.chat_message("user").markdown(user_message)
|
|
|
|
| 96 |
st.session_state.messages.append({"role": "user", "content": user_message})
|
| 97 |
|
| 98 |
+
selected_tools = [tool_loader.tools[idx] for idx, checkbox in enumerate(tool_checkboxes) if checkbox]
|
| 99 |
+
response = handle_submission(user_message, selected_tools)
|
| 100 |
+
|
| 101 |
with st.chat_message("assistant"):
|
| 102 |
if response is None:
|
| 103 |
st.warning("The agent's response is None. Please try again.")
|
| 104 |
+
elif "emojified_text" in response:
|
| 105 |
+
st.markdown(f"Emojified Text: {response['emojified_text']}")
|
| 106 |
elif isinstance(response, Image.Image):
|
| 107 |
st.image(response)
|
|
|
|
| 108 |
elif "audio" in str(response):
|
| 109 |
audio_data = base64.b64decode(response.split(",")[1])
|
| 110 |
audio = AudioSegment.from_file(io.BytesIO(audio_data))
|
|
|
|
| 115 |
st.markdown(response)
|
| 116 |
elif isinstance(response, int):
|
| 117 |
st.markdown(response)
|
|
|
|
|
|
|
| 118 |
else:
|
| 119 |
st.warning("Unrecognized response type. Please try again.")
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|