Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,50 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
x = st.slider('Select a value')
|
| 4 |
-
st.write(x, 'squared is', x * x)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import BertModel, BertTokenizer
|
| 3 |
+
from transformers import HfAgent, load_tool
|
| 4 |
+
|
| 5 |
+
# Load tools
|
| 6 |
+
controlnet_transformer = load_tool("huggingface-tools/text-to-image")
|
| 7 |
+
upscaler = load_tool("diffusers/latent-upscaler-tool")
|
| 8 |
+
|
| 9 |
+
tools = [controlnet_transformer, upscaler ]
|
| 10 |
+
|
| 11 |
+
# Define the model and tokenizer
|
| 12 |
+
model = BertModel.from_pretrained('bert-base-uncased')
|
| 13 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
| 14 |
+
|
| 15 |
+
# Create the Streamlit app
|
| 16 |
+
st.title("Hugging Face Agent")
|
| 17 |
+
|
| 18 |
+
# Input field for the user's message
|
| 19 |
+
message_input = st.text_input("Enter your message:", "")
|
| 20 |
+
|
| 21 |
+
# Checkboxes for the tools to be used by the agent
|
| 22 |
+
tool_checkboxes = [st.checkbox(f"Use {tool}") for tool in tools]
|
| 23 |
+
|
| 24 |
+
# Submit button
|
| 25 |
+
submit_button = st.button("Submit")
|
| 26 |
+
|
| 27 |
+
# Define the callback function to handle the form submission
|
| 28 |
+
def handle_submission():
|
| 29 |
+
# Get the user's message and the selected tools
|
| 30 |
+
message = message_input
|
| 31 |
+
selected_tools = [tool for tool, checkbox in zip(tools, tool_checkboxes) if checkbox]
|
| 32 |
+
|
| 33 |
+
# Initialize the agent with the selected tools
|
| 34 |
+
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder", additional_tools=tools)
|
| 35 |
+
|
| 36 |
+
agent.config.tokenizer = tokenizer
|
| 37 |
+
agent.config.tools = selected_tools
|
| 38 |
+
|
| 39 |
+
# Process the user's message
|
| 40 |
+
inputs = tokenizer.encode_plus(message, add_special_tokens=True, return_tensors="pt")
|
| 41 |
+
outputs = agent(inputs['input_ids'], attention_mask=inputs['attention_mask'])
|
| 42 |
+
|
| 43 |
+
# Display the agent's response
|
| 44 |
+
response = outputs.logits[0].item()
|
| 45 |
+
st.text(f"{response:.4f}")
|
| 46 |
+
|
| 47 |
+
# Add the callback function to the Streamlit app
|
| 48 |
+
submit_button = st.button("Submit", on_click=handle_submission)
|
| 49 |
+
|
| 50 |
|
|
|
|
|
|