Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- FRIDA/classifier_head.pth +3 -0
- FRIDA/model.py +120 -0
FRIDA/classifier_head.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b7462dbdb05464f0f535e7a2d86d456d2bd968564d06a7131ab50c90c026101a
|
| 3 |
+
size 3277912
|
FRIDA/model.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from transformers import AutoTokenizer, T5EncoderModel
|
| 4 |
+
import os
|
| 5 |
+
from typing import List
|
| 6 |
+
import re
|
| 7 |
+
|
| 8 |
+
FRIDA_EMB_DIM = 1536
|
| 9 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def pool(hidden_state, mask, pooling_method="cls"):
|
| 13 |
+
if pooling_method == "mean":
|
| 14 |
+
s = torch.sum(hidden_state * mask.unsqueeze(-1).float(), dim=1)
|
| 15 |
+
d = mask.sum(axis=1, keepdim=True).float()
|
| 16 |
+
return s / d
|
| 17 |
+
elif pooling_method == "cls":
|
| 18 |
+
return hidden_state[:, 0]
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class FridaClassifier(torch.nn.Module):
|
| 22 |
+
def __init__(self):
|
| 23 |
+
super(FridaClassifier, self).__init__()
|
| 24 |
+
self.frida_embedder = T5EncoderModel.from_pretrained("ai-forever/FRIDA")
|
| 25 |
+
self._freeze_embedder_grad()
|
| 26 |
+
self.classifier = torch.nn.Sequential(
|
| 27 |
+
torch.nn.Linear(in_features=FRIDA_EMB_DIM, out_features=500),
|
| 28 |
+
torch.nn.Dropout(p=0.2),
|
| 29 |
+
torch.nn.SELU(),
|
| 30 |
+
torch.nn.Linear(in_features=500, out_features=100),
|
| 31 |
+
torch.nn.Dropout(p=0.1),
|
| 32 |
+
torch.nn.SELU(),
|
| 33 |
+
torch.nn.Linear(in_features=100, out_features=2)
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
def _freeze_embedder_grad(self):
|
| 37 |
+
for param in self.frida_embedder.parameters():
|
| 38 |
+
param.requires_grad = False
|
| 39 |
+
|
| 40 |
+
def forward(self, input_ids, attention_mask):
|
| 41 |
+
with torch.no_grad(): # no gradients calculation for frida embedder
|
| 42 |
+
outputs = self.frida_embedder(input_ids=input_ids, attention_mask=attention_mask)
|
| 43 |
+
|
| 44 |
+
embeddings = pool(
|
| 45 |
+
outputs.last_hidden_state,
|
| 46 |
+
attention_mask,
|
| 47 |
+
pooling_method="cls" # or try "mean"
|
| 48 |
+
)
|
| 49 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 50 |
+
out = self.classifier(embeddings)
|
| 51 |
+
|
| 52 |
+
return out
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# return model and tokenizer
|
| 56 |
+
def load_model(head_path: str):
|
| 57 |
+
if not os.path.isfile(head_path):
|
| 58 |
+
raise Exception(f'no model weights with path - {head_path}')
|
| 59 |
+
loaded_model = FridaClassifier()
|
| 60 |
+
loaded_model.classifier.load_state_dict(torch.load(head_path, map_location='cpu', weights_only=True))
|
| 61 |
+
loaded_model.eval()
|
| 62 |
+
loaded_model.to(device)
|
| 63 |
+
tokenizer = AutoTokenizer.from_pretrained("ai-forever/FRIDA")
|
| 64 |
+
|
| 65 |
+
return loaded_model, tokenizer
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def infer(model: FridaClassifier, tokenizer: AutoTokenizer, texts: List[str], device):
|
| 69 |
+
with torch.no_grad():
|
| 70 |
+
model.eval()
|
| 71 |
+
texts = ["categorize_sentiment: " + text for text in texts]
|
| 72 |
+
tokenized_data = tokenizer(texts, max_length=512, padding=True, truncation=True, return_tensors="pt")
|
| 73 |
+
input_ids, attention_masks = tokenized_data['input_ids'].type(torch.LongTensor).to(device), tokenized_data[
|
| 74 |
+
'attention_mask'].type(torch.LongTensor).to(device)
|
| 75 |
+
logits_tensor = model(input_ids, attention_masks)
|
| 76 |
+
sft_max = torch.nn.Softmax(dim=-1)
|
| 77 |
+
pred_probs = sft_max(logits_tensor)
|
| 78 |
+
|
| 79 |
+
return pred_probs
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
labels = {0: 'non-toxic', 1: 'toxic'}
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
print('loading model and tokenizer...')
|
| 86 |
+
chkp_dir = 'models/' # CHANGE ON YOUR DIR WITH HEAD WEIGHTS!
|
| 87 |
+
model, tokenizer = load_model(os.path.join(chkp_dir, "classifier_head.pth"))
|
| 88 |
+
print('loaded.')
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
from typing import List
|
| 92 |
+
from pydantic import BaseModel
|
| 93 |
+
|
| 94 |
+
# Define DTOs
|
| 95 |
+
class ToxicityPrediction(BaseModel):
|
| 96 |
+
text: str
|
| 97 |
+
label: str
|
| 98 |
+
toxicity_rate: float
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
class ToxicityPredictionResponse(BaseModel):
|
| 102 |
+
predictions: List[ToxicityPrediction]
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def generate_resp(texts: List[str]):
|
| 106 |
+
probs = infer(model, tokenizer, texts, device)
|
| 107 |
+
probs_arr = probs.to('cpu').numpy()
|
| 108 |
+
predictions = torch.argmax(probs, dim=-1).int().to('cpu').numpy()
|
| 109 |
+
predicted_labels = [labels[label] for label in predictions]
|
| 110 |
+
|
| 111 |
+
predictions_list = [
|
| 112 |
+
ToxicityPrediction(
|
| 113 |
+
text=texts[i],
|
| 114 |
+
label=predicted_labels[i],
|
| 115 |
+
toxicity_rate=float(probs_arr[i][1]) # Ensure float type
|
| 116 |
+
)
|
| 117 |
+
for i in range(len(texts))
|
| 118 |
+
]
|
| 119 |
+
|
| 120 |
+
return ToxicityPredictionResponse(predictions=predictions_list)
|