Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
# Load the tokenizer and model
|
| 6 |
+
model_name = "iiiorg/piiranha-v1-detect-personal-information"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
| 9 |
+
|
| 10 |
+
# Set device to GPU if available
|
| 11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
model.to(device)
|
| 13 |
+
|
| 14 |
+
def apply_redaction(masked_text, start, end, pii_type, aggregate_redaction):
|
| 15 |
+
for j in range(start, end):
|
| 16 |
+
masked_text[j] = ''
|
| 17 |
+
if aggregate_redaction:
|
| 18 |
+
masked_text[start] = '[redacted]'
|
| 19 |
+
else:
|
| 20 |
+
masked_text[start] = f'[{pii_type}]'
|
| 21 |
+
|
| 22 |
+
def mask_pii(text, aggregate_redaction=True):
|
| 23 |
+
# Tokenize input text
|
| 24 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 25 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 26 |
+
|
| 27 |
+
# Get the model predictions
|
| 28 |
+
with torch.no_grad():
|
| 29 |
+
outputs = model(**inputs)
|
| 30 |
+
|
| 31 |
+
# Get the predicted labels
|
| 32 |
+
predictions = torch.argmax(outputs.logits, dim=-1)
|
| 33 |
+
|
| 34 |
+
# Convert token predictions to word predictions
|
| 35 |
+
encoded_inputs = tokenizer.encode_plus(text, return_offsets_mapping=True, add_special_tokens=True)
|
| 36 |
+
offset_mapping = encoded_inputs['offset_mapping']
|
| 37 |
+
|
| 38 |
+
masked_text = list(text)
|
| 39 |
+
is_redacting = False
|
| 40 |
+
redaction_start = 0
|
| 41 |
+
current_pii_type = ''
|
| 42 |
+
|
| 43 |
+
for i, (start, end) in enumerate(offset_mapping):
|
| 44 |
+
if start == end: # Special token
|
| 45 |
+
continue
|
| 46 |
+
|
| 47 |
+
label = predictions[0][i].item()
|
| 48 |
+
if label != model.config.label2id['O']: # Non-O label
|
| 49 |
+
pii_type = model.config.id2label[label]
|
| 50 |
+
if not is_redacting:
|
| 51 |
+
is_redacting = True
|
| 52 |
+
redaction_start = start
|
| 53 |
+
current_pii_type = pii_type
|
| 54 |
+
elif not aggregate_redaction and pii_type != current_pii_type:
|
| 55 |
+
# End current redaction and start a new one
|
| 56 |
+
apply_redaction(masked_text, redaction_start, start, current_pii_type, aggregate_redaction)
|
| 57 |
+
redaction_start = start
|
| 58 |
+
current_pii_type = pii_type
|
| 59 |
+
else:
|
| 60 |
+
if is_redacting:
|
| 61 |
+
apply_redaction(masked_text, redaction_start, end, current_pii_type, aggregate_redaction)
|
| 62 |
+
is_redacting = False
|
| 63 |
+
|
| 64 |
+
# Handle case where PII is at the end of the text
|
| 65 |
+
if is_redacting:
|
| 66 |
+
apply_redaction(masked_text, redaction_start, len(masked_text), current_pii_type, aggregate_redaction)
|
| 67 |
+
|
| 68 |
+
return ''.join(masked_text)
|
| 69 |
+
|
| 70 |
+
# Define the function for Gradio interface
|
| 71 |
+
def redact_text(text, aggregate_redaction):
|
| 72 |
+
return mask_pii(text, aggregate_redaction)
|
| 73 |
+
|
| 74 |
+
# Create Gradio Interface
|
| 75 |
+
demo = gr.Interface(
|
| 76 |
+
fn=redact_text,
|
| 77 |
+
inputs=[
|
| 78 |
+
gr.Textbox(lines=5, label="Enter Text with Potential PII"),
|
| 79 |
+
gr.Checkbox(label="Aggregate Redaction", value=True)
|
| 80 |
+
],
|
| 81 |
+
outputs="text",
|
| 82 |
+
title="PII Detection and Redaction",
|
| 83 |
+
description="This application detects personal identifiable information (PII) and redacts it from the provided text. You can choose to either aggregate all PII redaction into a single '[redacted]' label or keep each PII type labeled individually.",
|
| 84 |
+
examples=[
|
| 85 |
+
["John Doe's phone number is 123-456-7890, and his email is [email protected]."],
|
| 86 |
+
["Jane was born on 12th August, 1990 and her SSN is 987-65-4321."]
|
| 87 |
+
]
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
if __name__ == "__main__":
|
| 91 |
+
demo.launch()
|