Spaces:
Sleeping
Sleeping
| import torch | |
| import streamlit as st | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| # Model name | |
| model_name = "ybelkada/falcon-7b-sharded-bf16" | |
| # Load tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| # Load model in CPU mode | |
| device = "cpu" # Hugging Face Spaces does not provide free GPUs | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype=torch.float16, # Use float16 for lower memory usage | |
| device_map=device | |
| ) | |
| # Streamlit UI | |
| st.title("🦜 Falcon-7B Chatbot") | |
| st.write("Ask me anything!") | |
| # Store chat history | |
| if "chat_history" not in st.session_state: | |
| st.session_state.chat_history = [] | |
| # User input | |
| user_input = st.text_input("You:", "") | |
| if user_input: | |
| # Tokenize input | |
| inputs = tokenizer(user_input, return_tensors="pt") | |
| inputs.pop("token_type_ids", None) # Remove token_type_ids to avoid errors | |
| inputs = {key: value.to(device) for key, value in inputs.items()} # Move inputs to device | |
| # Generate response | |
| with torch.no_grad(): | |
| output = model.generate(**inputs, max_length=200, do_sample=True, top_k=50, top_p=0.95) | |
| # Decode response | |
| response = tokenizer.decode(output[:, inputs["input_ids"].shape[-1]:][0], skip_special_tokens=True) | |
| # Store and display chat history | |
| st.session_state.chat_history.append(("You", user_input)) | |
| st.session_state.chat_history.append(("Bot", response)) | |
| # Display chat history | |
| for sender, message in st.session_state.chat_history: | |
| st.write(f"**{sender}:** {message}") | |