Spaces:
Running
Running
Upload all space files
Browse files- README.md +185 -12
- app.py +255 -0
- female_embedding.pt +3 -0
- male_embedding.pt +3 -0
- requirements.txt +6 -0
README.md
CHANGED
|
@@ -1,12 +1,185 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Moroccan Darija Text-to-Speech Model
|
| 2 |
+
|
| 3 |
+
This project implements a Text-to-Speech (TTS) system for Moroccan Darija using the SpeechT5 architecture. It's fine-tuned on the DODa-audio-dataset to generate natural-sounding Darija speech from text input.
|
| 4 |
+
|
| 5 |
+
## Table of Contents
|
| 6 |
+
- [Dataset Overview](#dataset-overview)
|
| 7 |
+
- [Project Structure](#project-structure)
|
| 8 |
+
- [Installation](#installation)
|
| 9 |
+
- [Model Training](#model-training)
|
| 10 |
+
- [Inference](#inference)
|
| 11 |
+
- [Gradio Demo](#gradio-demo)
|
| 12 |
+
- [Project Features](#project-features)
|
| 13 |
+
- [Potential Applications](#potential-applications)
|
| 14 |
+
- [Limitations and Future Work](#limitations-and-future-work)
|
| 15 |
+
- [License](#license)
|
| 16 |
+
|
| 17 |
+
## Dataset Overview
|
| 18 |
+
|
| 19 |
+
The **DODa audio dataset** contains 12,743 sentences recorded by 7 contributors (4 females, 3 males). Key characteristics:
|
| 20 |
+
|
| 21 |
+
- Audio recordings standardized at 16kHz sample rate
|
| 22 |
+
- Multiple text representations (Latin script, Arabic script, and English translations)
|
| 23 |
+
- High-quality recordings with manual corrections
|
| 24 |
+
|
| 25 |
+
### Dataset Structure
|
| 26 |
+
| Column Name | Description |
|
| 27 |
+
|-------------|-------------|
|
| 28 |
+
| **audio** | Speech recordings for Darija sentences |
|
| 29 |
+
| **darija_Ltn** | Darija sentences using Latin letters |
|
| 30 |
+
| **darija_Arab_new** | Corrected Darija sentences using Arabic script |
|
| 31 |
+
| **english** | English translation of Darija sentences |
|
| 32 |
+
| **darija_Arab_old** | Original (uncorrected) Darija sentences in Arabic script |
|
| 33 |
+
|
| 34 |
+
### Speaker Distribution
|
| 35 |
+
The dataset includes recordings from 7 speakers (4 females, 3 males) with the following distribution:
|
| 36 |
+
```
|
| 37 |
+
Samples 0-999 -> Female 1
|
| 38 |
+
Samples 1000-1999 -> Male 3
|
| 39 |
+
Samples 2000-2730 -> Female 2
|
| 40 |
+
Samples 2731-2800 -> Male 1
|
| 41 |
+
Samples 2801-3999 -> Male 2
|
| 42 |
+
Samples 4000-4999 -> Male 1
|
| 43 |
+
Samples 5000-5999 -> Female 3
|
| 44 |
+
Samples 6000-6999 -> Male 1
|
| 45 |
+
Samples 7000-7999 -> Female 4
|
| 46 |
+
Samples 8000-8999 -> Female 1
|
| 47 |
+
Samples 9000-9999 -> Male 2
|
| 48 |
+
Samples 10000-11999 -> Male 1
|
| 49 |
+
Samples 12000-12350 -> Male 2
|
| 50 |
+
Samples 12351-12742 -> Male 1
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
## Installation
|
| 56 |
+
|
| 57 |
+
To set up the project environment:
|
| 58 |
+
|
| 59 |
+
```bash
|
| 60 |
+
# Clone the repository
|
| 61 |
+
git clone https://github.com/yourusername/darija-tts.git
|
| 62 |
+
cd darija-tts
|
| 63 |
+
|
| 64 |
+
# Create a virtual environment (optional but recommended)
|
| 65 |
+
python -m venv venv
|
| 66 |
+
source venv/bin/activate # On Windows: venv\Scriptsctivate
|
| 67 |
+
|
| 68 |
+
# Install dependencies
|
| 69 |
+
pip install -r requirements.txt
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
## Model Training
|
| 73 |
+
|
| 74 |
+
The model training process involves:
|
| 75 |
+
|
| 76 |
+
1. **Data Loading**: Loading the DODa audio dataset from Hugging Face
|
| 77 |
+
2. **Data Preprocessing**: Normalizing text and extracting speaker embeddings
|
| 78 |
+
3. **Model Setup**: Configuring the SpeechT5 model for Darija TTS
|
| 79 |
+
4. **Training**: Fine-tuning the model using the prepared dataset
|
| 80 |
+
|
| 81 |
+
To run the training:
|
| 82 |
+
|
| 83 |
+
```bash
|
| 84 |
+
# Open the Jupyter notebook
|
| 85 |
+
jupyter notebook notebooks/train_darija_tts.ipynb
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
Key training parameters:
|
| 89 |
+
- Learning rate: 1e-4
|
| 90 |
+
- Batch size: 4 (with gradient accumulation: 8)
|
| 91 |
+
- Training steps: 1000
|
| 92 |
+
- Evaluation frequency: Every 100 steps
|
| 93 |
+
|
| 94 |
+
## Inference
|
| 95 |
+
|
| 96 |
+
To generate speech from text after training:
|
| 97 |
+
|
| 98 |
+
```python
|
| 99 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 100 |
+
import torch
|
| 101 |
+
import soundfile as sf
|
| 102 |
+
|
| 103 |
+
# Load models
|
| 104 |
+
model_path = "./models/speecht5_finetuned_Darija"
|
| 105 |
+
processor = SpeechT5Processor.from_pretrained(model_path)
|
| 106 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(model_path)
|
| 107 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
| 108 |
+
|
| 109 |
+
# Load speaker embedding
|
| 110 |
+
speaker_embedding = torch.load("./data/speaker_embeddings/female_embedding.pt")
|
| 111 |
+
|
| 112 |
+
# Normalize and process input text
|
| 113 |
+
text = "Salam, kifach nta lyoum?"
|
| 114 |
+
inputs = processor(text=text, return_tensors="pt")
|
| 115 |
+
|
| 116 |
+
# Generate speech
|
| 117 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)
|
| 118 |
+
|
| 119 |
+
# Save audio file
|
| 120 |
+
sf.write("output.wav", speech.numpy(), 16000)
|
| 121 |
+
```
|
| 122 |
+
|
| 123 |
+
## Gradio Demo
|
| 124 |
+
|
| 125 |
+
The project includes a Gradio demo that provides a user-friendly interface for text-to-speech conversion:
|
| 126 |
+
|
| 127 |
+
```bash
|
| 128 |
+
# Run the demo locally
|
| 129 |
+
cd demo
|
| 130 |
+
python app.py
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
The demo features:
|
| 134 |
+
- Text input field for Darija text (Latin script)
|
| 135 |
+
- Voice selection (male/female)
|
| 136 |
+
- Speech speed adjustment
|
| 137 |
+
- Audio playback of generated speech
|
| 138 |
+
|
| 139 |
+
### Deploying to Hugging Face Spaces
|
| 140 |
+
|
| 141 |
+
To deploy the demo to Hugging Face Spaces:
|
| 142 |
+
|
| 143 |
+
1. Push your model to the Hugging Face Hub
|
| 144 |
+
2. Create a new Space with the Gradio SDK
|
| 145 |
+
3. Upload the demo files to the Space
|
| 146 |
+
|
| 147 |
+
See the notebook for detailed deployment instructions.
|
| 148 |
+
|
| 149 |
+
## Project Features
|
| 150 |
+
|
| 151 |
+
- **Multi-Speaker TTS**: Generate speech in both male and female voices
|
| 152 |
+
- **Voice Cloning**: Utilizes speaker embeddings for voice characteristics preservation
|
| 153 |
+
- **Speed Control**: Adjust the speech rate as needed
|
| 154 |
+
- **Text Normalization**: Handles various text inputs through proper normalization
|
| 155 |
+
|
| 156 |
+
## Potential Applications
|
| 157 |
+
|
| 158 |
+
- **Voice Assistants**: Build voice assistants that speak Moroccan Darija
|
| 159 |
+
- **Accessibility Tools**: Create tools for people with visual impairments
|
| 160 |
+
- **Language Learning**: Develop applications for learning Darija pronunciation
|
| 161 |
+
- **Content Creation**: Generate voiceovers for videos or audio content
|
| 162 |
+
- **Public Announcements**: Create automated announcement systems in Darija
|
| 163 |
+
|
| 164 |
+
## Limitations and Future Work
|
| 165 |
+
|
| 166 |
+
Current limitations:
|
| 167 |
+
- The model may struggle with code-switching between Darija and other languages
|
| 168 |
+
- Pronunciation of certain loanwords might be inconsistent
|
| 169 |
+
- Limited emotional range in the generated speech
|
| 170 |
+
|
| 171 |
+
Future improvements:
|
| 172 |
+
- Fine-tune with more diverse speech data
|
| 173 |
+
- Implement emotion control for expressive speech
|
| 174 |
+
- Add support for Arabic script input
|
| 175 |
+
- Develop a multilingual version supporting Darija, Arabic, and French
|
| 176 |
+
|
| 177 |
+
## License
|
| 178 |
+
|
| 179 |
+
This project is released under the MIT License. The DODa audio dataset is also available under the MIT License.
|
| 180 |
+
|
| 181 |
+
## Acknowledgments
|
| 182 |
+
|
| 183 |
+
- The [DODa audio dataset](https://huggingface.co/datasets/atlasia/DODa-audio-dataset) creators
|
| 184 |
+
- Hugging Face for the Transformers library and model hosting
|
| 185 |
+
- Microsoft Research for the SpeechT5 model architecture
|
app.py
ADDED
|
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch
|
| 3 |
+
import soundfile as sf
|
| 4 |
+
import os
|
| 5 |
+
import re
|
| 6 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 7 |
+
from speechbrain.pretrained import EncoderClassifier
|
| 8 |
+
|
| 9 |
+
# Define paths and device
|
| 10 |
+
model_path = "HAMMALE/speecht5-darija" # Path to your model on HF Hub
|
| 11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
print(f"Using device: {device}")
|
| 13 |
+
|
| 14 |
+
# Load models
|
| 15 |
+
processor = SpeechT5Processor.from_pretrained(model_path)
|
| 16 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(model_path).to(device)
|
| 17 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
| 18 |
+
|
| 19 |
+
# Load speaker embedding model
|
| 20 |
+
speaker_model = EncoderClassifier.from_hparams(
|
| 21 |
+
source="speechbrain/spkrec-xvect-voxceleb",
|
| 22 |
+
run_opts={"device": device},
|
| 23 |
+
savedir=os.path.join("/tmp", "spkrec-xvect-voxceleb"),
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Load pre-computed speaker embeddings
|
| 27 |
+
male_embedding = torch.load("male_embedding.pt") if os.path.exists("male_embedding.pt") else torch.randn(1, 512)
|
| 28 |
+
female_embedding = torch.load("female_embedding.pt") if os.path.exists("female_embedding.pt") else torch.randn(1, 512)
|
| 29 |
+
|
| 30 |
+
# Text normalization function
|
| 31 |
+
def normalize_text(text):
|
| 32 |
+
"""Normalize text for TTS processing"""
|
| 33 |
+
text = text.lower()
|
| 34 |
+
# Keep letters, numbers, spaces and apostrophes - fixed regex
|
| 35 |
+
text = re.sub(r'[^\w\s\'\u0600-\u06FF]', '', text)
|
| 36 |
+
text = ' '.join(text.split())
|
| 37 |
+
return text
|
| 38 |
+
|
| 39 |
+
# Function to synthesize speech
|
| 40 |
+
def synthesize_speech(text, voice_type="male", speed=1.0):
|
| 41 |
+
"""Generate speech from text using the specified voice type"""
|
| 42 |
+
try:
|
| 43 |
+
# Select speaker embedding based on voice type
|
| 44 |
+
if voice_type == "male":
|
| 45 |
+
speaker_embeddings = male_embedding.to(device)
|
| 46 |
+
else:
|
| 47 |
+
speaker_embeddings = female_embedding.to(device)
|
| 48 |
+
|
| 49 |
+
# Normalize and tokenize input text
|
| 50 |
+
normalized_text = normalize_text(text)
|
| 51 |
+
inputs = processor(text=normalized_text, return_tensors="pt").to(device)
|
| 52 |
+
|
| 53 |
+
# Generate speech
|
| 54 |
+
with torch.no_grad():
|
| 55 |
+
speech = model.generate_speech(
|
| 56 |
+
inputs["input_ids"],
|
| 57 |
+
speaker_embeddings,
|
| 58 |
+
vocoder=vocoder
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# Convert to numpy array and adjust speed if needed
|
| 62 |
+
speech_np = speech.cpu().numpy()
|
| 63 |
+
|
| 64 |
+
# Apply speed adjustment (simple resampling)
|
| 65 |
+
if speed != 1.0:
|
| 66 |
+
# This is a simple approach - for production use a proper resampling library
|
| 67 |
+
import numpy as np
|
| 68 |
+
from scipy import signal
|
| 69 |
+
sample_rate = 16000
|
| 70 |
+
new_length = int(len(speech_np) / speed)
|
| 71 |
+
speech_np = signal.resample(speech_np, new_length)
|
| 72 |
+
|
| 73 |
+
# Save temporary audio file
|
| 74 |
+
output_file = "output_speech.wav"
|
| 75 |
+
sf.write(output_file, speech_np, 16000)
|
| 76 |
+
|
| 77 |
+
return output_file, None
|
| 78 |
+
|
| 79 |
+
except Exception as e:
|
| 80 |
+
return None, f"Error generating speech: {str(e)}"
|
| 81 |
+
|
| 82 |
+
# Gradio imports need to be added
|
| 83 |
+
import gradio as gr
|
| 84 |
+
|
| 85 |
+
# Custom CSS for better design
|
| 86 |
+
custom_css = """
|
| 87 |
+
.gradio-container {
|
| 88 |
+
font-family: 'Poppins', 'Arial', sans-serif;
|
| 89 |
+
max-width: 750px;
|
| 90 |
+
margin: auto;
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
.main-header {
|
| 94 |
+
background: linear-gradient(90deg, #c31432, #240b36);
|
| 95 |
+
color: white;
|
| 96 |
+
padding: 1.5em;
|
| 97 |
+
border-radius: 10px;
|
| 98 |
+
text-align: center;
|
| 99 |
+
margin-bottom: 1em;
|
| 100 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
.main-header h1 {
|
| 104 |
+
font-size: 2.2em;
|
| 105 |
+
margin-bottom: 0.3em;
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
.main-header p {
|
| 109 |
+
font-size: 1.1em;
|
| 110 |
+
opacity: 0.9;
|
| 111 |
+
}
|
| 112 |
+
|
| 113 |
+
footer {
|
| 114 |
+
text-align: center;
|
| 115 |
+
margin-top: 2em;
|
| 116 |
+
color: #555;
|
| 117 |
+
font-size: 0.9em;
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
.flag-icon {
|
| 121 |
+
width: 24px;
|
| 122 |
+
height: 24px;
|
| 123 |
+
vertical-align: middle;
|
| 124 |
+
margin-right: 8px;
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
.example-header {
|
| 128 |
+
font-weight: bold;
|
| 129 |
+
color: #c31432;
|
| 130 |
+
margin-top: 1em;
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
.info-box {
|
| 134 |
+
background-color: #f9f9f9;
|
| 135 |
+
border-left: 4px solid #c31432;
|
| 136 |
+
padding: 1em;
|
| 137 |
+
margin: 1em 0;
|
| 138 |
+
border-radius: 5px;
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
.voice-selector {
|
| 142 |
+
display: flex;
|
| 143 |
+
justify-content: center;
|
| 144 |
+
gap: 20px;
|
| 145 |
+
margin: 10px 0;
|
| 146 |
+
}
|
| 147 |
+
|
| 148 |
+
.voice-option {
|
| 149 |
+
border: 2px solid #ddd;
|
| 150 |
+
border-radius: 10px;
|
| 151 |
+
padding: 10px 15px;
|
| 152 |
+
transition: all 0.3s ease;
|
| 153 |
+
cursor: pointer;
|
| 154 |
+
}
|
| 155 |
+
|
| 156 |
+
.voice-option.selected {
|
| 157 |
+
border-color: #c31432;
|
| 158 |
+
background-color: #fff5f5;
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
.slider-container {
|
| 162 |
+
margin: 20px 0;
|
| 163 |
+
}
|
| 164 |
+
"""
|
| 165 |
+
|
| 166 |
+
# Create Gradio interface with improved design
|
| 167 |
+
with gr.Blocks(css=custom_css) as demo:
|
| 168 |
+
gr.HTML(
|
| 169 |
+
"""
|
| 170 |
+
<div class="main-header">
|
| 171 |
+
<h1>🇲🇦 Moroccan Darija Text-to-Speech 🎧</h1>
|
| 172 |
+
<p>Convert Moroccan Arabic (Darija) text into natural-sounding speech</p>
|
| 173 |
+
</div>
|
| 174 |
+
"""
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
with gr.Row():
|
| 178 |
+
with gr.Column():
|
| 179 |
+
gr.HTML(
|
| 180 |
+
"""
|
| 181 |
+
<div class="info-box">
|
| 182 |
+
<p>This model was fine-tuned on the DODa audio dataset to produce high-quality
|
| 183 |
+
Darija speech from text input. You can adjust the voice and speed below.</p>
|
| 184 |
+
</div>
|
| 185 |
+
"""
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
text_input = gr.Textbox(
|
| 189 |
+
label="Enter Darija Text",
|
| 190 |
+
placeholder="Kteb chi jomla b darija hna...",
|
| 191 |
+
lines=3
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
with gr.Row():
|
| 195 |
+
voice_type = gr.Radio(
|
| 196 |
+
["male", "female"],
|
| 197 |
+
label="Voice Type",
|
| 198 |
+
value="male"
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
speed = gr.Slider(
|
| 202 |
+
minimum=0.5,
|
| 203 |
+
maximum=2.0,
|
| 204 |
+
value=1.0,
|
| 205 |
+
step=0.1,
|
| 206 |
+
label="Speech Speed"
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
generate_btn = gr.Button("Generate Speech", variant="primary")
|
| 210 |
+
|
| 211 |
+
gr.HTML(
|
| 212 |
+
"""
|
| 213 |
+
<div class="example-header">Example phrases:</div>
|
| 214 |
+
<ul>
|
| 215 |
+
<li>"Ana Nadi Bezzaaf hhh"</li>
|
| 216 |
+
<li>"Lyoum ajwaa zwina bezzaf."</li>
|
| 217 |
+
<li>"lmaghrib ahssan blad fi l3alam "</li>
|
| 218 |
+
</ul>
|
| 219 |
+
"""
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
with gr.Column():
|
| 223 |
+
audio_output = gr.Audio(label="Generated Speech")
|
| 224 |
+
error_output = gr.Textbox(label="Error (if any)", visible=False)
|
| 225 |
+
|
| 226 |
+
gr.Examples(
|
| 227 |
+
examples=[
|
| 228 |
+
["Ana Nadi Bezzaaf hhh", "male", 1.0],
|
| 229 |
+
["Lyoum ajwaa zwina bezzaf.", "female", 1.0],
|
| 230 |
+
["lmaghrib ahssan blad fi l3alam", "male", 1.0],
|
| 231 |
+
["Filistine hora mina lbar ila lbahr", "female", 0.8],
|
| 232 |
+
],
|
| 233 |
+
inputs=[text_input, voice_type, speed],
|
| 234 |
+
outputs=[audio_output, error_output],
|
| 235 |
+
fn=synthesize_speech
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
gr.HTML(
|
| 239 |
+
"""
|
| 240 |
+
<footer>
|
| 241 |
+
<p>Developed by HAMMALE | Powered by Microsoft SpeechT5 | Data: DODa</p>
|
| 242 |
+
</footer>
|
| 243 |
+
"""
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
# Set button click action
|
| 247 |
+
generate_btn.click(
|
| 248 |
+
fn=synthesize_speech,
|
| 249 |
+
inputs=[text_input, voice_type, speed],
|
| 250 |
+
outputs=[audio_output, error_output]
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
# Launch the demo
|
| 254 |
+
if __name__ == "__main__":
|
| 255 |
+
demo.launch()
|
female_embedding.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9f87744b22b910652a6cc2645e99e9c2d6d63d4d8cb5e803dd0b8b520863ea0f
|
| 3 |
+
size 3273
|
male_embedding.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:268bdfbc37c7bab90de174bc30105c509d8149b1b8be2ddd888353ab924d6c7c
|
| 3 |
+
size 3263
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=3.50.2
|
| 2 |
+
torch>=2.0.0
|
| 3 |
+
transformers>=4.32.0
|
| 4 |
+
speechbrain==0.5.16
|
| 5 |
+
soundfile>=0.12.1
|
| 6 |
+
scipy>=1.11.1
|