--- title: VoiceAPI emoji: 🎙️ colorFrom: blue colorTo: purple sdk: docker app_port: 7860 license: mit tags: - tts - text-to-speech - indian-languages - vits - multilingual - speech-synthesis --- # 🎙️ VoiceAPI - Multi-lingual Indian Language TTS An advanced **multi-speaker, multilingual text-to-speech (TTS) synthesizer** supporting 11 Indian languages with 21 voice options. **Live API**: [https://harshil748-voiceapi.hf.space](https://harshil748-voiceapi.hf.space) ## 🌟 Features - **11 Indian Languages**: Hindi, Bengali, Marathi, Telugu, Kannada, Gujarati, Bhojpuri, Chhattisgarhi, Maithili, Magahi, English - **21 Voice Options**: Male and female voices for each language - **High-Quality Audio**: 22050 Hz sample rate, natural prosody - **REST API**: Simple GET/POST endpoints for easy integration - **Real-time Synthesis**: Fast inference on CPU/GPU ## 🗣️ Supported Languages | Language | Code | Female | Male | Script | |----------|------|--------|------|--------| | Hindi | hi | ✅ | ✅ | देवनागरी | | Bengali | bn | ✅ | ✅ | বাংলা | | Marathi | mr | ✅ | ✅ | देवनागरी | | Telugu | te | ✅ | ✅ | తెలుగు | | Kannada | kn | ✅ | ✅ | ಕನ್ನಡ | | Gujarati | gu | ✅ | - | ગુજરાતી | | Bhojpuri | bho | ✅ | ✅ | देवनागरी | | Chhattisgarhi | hne | ✅ | ✅ | देवनागरी | | Maithili | mai | ✅ | ✅ | देवनागरी | | Magahi | mag | ✅ | ✅ | देवनागरी | | English | en | ✅ | ✅ | Latin | ## 📡 API Usage ### Endpoint \`\`\` GET/POST /Get_Inference \`\`\` ### Parameters | Parameter | Type | Required | Description | |-----------|------|----------|-------------| | \`text\` | string | Yes | Text to synthesize (lowercase for English) | | \`lang\` | string | Yes | Language name (hindi, bengali, etc.) | | \`speaker_wav\` | file | Yes | Reference WAV file (for API compatibility) | ### Example (Python) \`\`\`python import requests base_url = 'https://harshil748-voiceapi.hf.space/Get_Inference' WavPath = 'reference.wav' params = { 'text': 'नमस्ते, आप कैसे हैं?', 'lang': 'hindi', } with open(WavPath, "rb") as AudioFile: response = requests.get(base_url, params=params, files={'speaker_wav': AudioFile.read()}) if response.status_code == 200: with open('output.wav', 'wb') as f: f.write(response.content) print("Audio saved as 'output.wav'") \`\`\` ### Example (cURL) \`\`\`bash curl -X POST "https://harshil748-voiceapi.hf.space/Get_Inference?text=hello&lang=english" \\ -F "speaker_wav=@reference.wav" \\ -o output.wav \`\`\` ## 🏗️ Model Architecture - **Base Model**: VITS (Variational Inference with adversarial learning for Text-to-Speech) - **Encoder**: Transformer-based text encoder (6 layers, 192 hidden channels) - **Decoder**: HiFi-GAN neural vocoder - **Duration Predictor**: Stochastic duration predictor for natural prosody - **Sample Rate**: 22050 Hz (16000 Hz for Gujarati) ## 📊 Training ### Datasets Used | Dataset | Languages | Hours | Source | License | |---------|-----------|-------|--------|---------| | OpenSLR-103 | Hindi | 24h | [OpenSLR](https://www.openslr.org/103/) | CC BY 4.0 | | OpenSLR-37 | Bengali | 22h | [OpenSLR](https://www.openslr.org/37/) | CC BY 4.0 | | OpenSLR-64 | Marathi | 30h | [OpenSLR](https://www.openslr.org/64/) | CC BY 4.0 | | OpenSLR-66 | Telugu | 28h | [OpenSLR](https://www.openslr.org/66/) | CC BY 4.0 | | OpenSLR-79 | Kannada | 26h | [OpenSLR](https://www.openslr.org/79/) | CC BY 4.0 | | OpenSLR-78 | Gujarati | 25h | [OpenSLR](https://www.openslr.org/78/) | CC BY 4.0 | | Common Voice | Hindi, Bengali | 50h+ | [Mozilla](https://commonvoice.mozilla.org/) | CC0 | | IndicTTS | Multiple | 100h+ | [IIT Madras](https://www.iitm.ac.in/donlab/tts/) | Research | | Indic-Voices | Multiple | 200h+ | [AI4Bharat](https://ai4bharat.iitm.ac.in/indic-voices/) | CC BY 4.0 | ### Training Configuration - **Epochs**: 1000 - **Batch Size**: 32 - **Learning Rate**: 2e-4 - **Optimizer**: AdamW - **FP16 Training**: Enabled - **Hardware**: NVIDIA V100/A100 GPUs ### Training Pipeline 1. **Data Preparation** (\`training/prepare_dataset.py\`) - Download audio datasets - Normalize audio to 22050 Hz - Generate text transcriptions - Create train/val splits 2. **Model Training** (\`training/train_vits.py\`) - Train VITS model with character-level tokenization - Multi-speaker training with speaker embeddings - Mixed precision training for efficiency 3. **Model Export** (\`training/export_model.py\`) - Export trained models to JIT format - Generate vocabulary files (chars.txt) - Package for inference See \`training/\` directory for full training scripts and configurations. ## �� Project Structure \`\`\` VoiceAPI/ ├── app.py # Application entry point ├── Dockerfile # Docker configuration ├── requirements.txt # Python dependencies ├── src/ │ ├── api.py # FastAPI REST server │ ├── engine.py # TTS inference engine │ ├── config.py # Voice configurations │ ├── tokenizer.py # Text tokenization │ └── model_loader.py # Model loading utilities ├── models/ # Trained model checkpoints │ ├── hi_male/ # Hindi male voice │ ├── hi_female/ # Hindi female voice │ ├── bn_male/ # Bengali male voice │ └── ... # Other voices └── training/ ├── train_vits.py # VITS training script ├── prepare_dataset.py # Data preparation ├── export_model.py # Model export ├── datasets.csv # Dataset links └── configs/ # Training configs \`\`\` ## 📜 License - **Code**: MIT License - **Models**: CC BY 4.0 - **Datasets**: Individual licenses (see training/datasets.csv) ## 🙏 Acknowledgments - [SYSPIN IISc SPIRE Lab](https://syspin.iisc.ac.in/) for Indian language speech research - [Facebook MMS](https://github.com/facebookresearch/fairseq/tree/main/examples/mms) for multilingual TTS - [Coqui TTS](https://github.com/coqui-ai/TTS) for the TTS library - [AI4Bharat](https://ai4bharat.iitm.ac.in/) for Indian language resources - [OpenSLR](https://www.openslr.org/) for speech datasets ## 📧 Contact Built for the **Voice Tech for All** Hackathon - Multi-lingual TTS for healthcare assistants serving low-income communities.