Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,21 +2,20 @@
|
|
| 2 |
|
| 3 |
|
| 4 |
import os
|
| 5 |
-
import time
|
| 6 |
-
from threading import Thread
|
| 7 |
from typing import Iterable, Dict, Any, Optional, List
|
|
|
|
|
|
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
import spaces
|
| 11 |
import torch
|
| 12 |
from PIL import Image
|
| 13 |
-
import pandas as pd
|
| 14 |
|
| 15 |
from transformers import (
|
| 16 |
Qwen3VLForConditionalGeneration,
|
| 17 |
AutoModelForCausalLM,
|
| 18 |
AutoProcessor,
|
| 19 |
-
TextIteratorStreamer,
|
| 20 |
)
|
| 21 |
|
| 22 |
from gradio.themes import Soft
|
|
@@ -26,7 +25,6 @@ from gradio.themes.utils import colors, fonts, sizes
|
|
| 26 |
# Character Error Rate (CER)
|
| 27 |
# ============================================================
|
| 28 |
|
| 29 |
-
|
| 30 |
def levenshtein(a: str, b: str) -> int:
|
| 31 |
"""Levenshtein distance to calculate CER."""
|
| 32 |
a, b = a.lower(), b.lower()
|
|
@@ -63,7 +61,6 @@ from huggingface_hub import hf_hub_download
|
|
| 63 |
|
| 64 |
REPO_ID = "IFMedTech/Medibot_OCR_model" # private backend repo
|
| 65 |
|
| 66 |
-
# Filenames in the repo → class names they define
|
| 67 |
PY_MODULES: Dict[str, str] = {
|
| 68 |
"clinical_NER.py": "ClinicalNER",
|
| 69 |
"tf_idf_phonetic.py": "TfidfPhoneticMatcher",
|
|
@@ -73,7 +70,6 @@ PY_MODULES: Dict[str, str] = {
|
|
| 73 |
|
| 74 |
HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN") # must be set in Space secrets
|
| 75 |
|
| 76 |
-
|
| 77 |
def _dynamic_import(module_path: str, class_name: str):
|
| 78 |
spec = importlib.util.spec_from_file_location(class_name, module_path)
|
| 79 |
module = importlib.util.module_from_spec(spec)
|
|
@@ -93,7 +89,7 @@ if HF_TOKEN is None:
|
|
| 93 |
else:
|
| 94 |
print(f"[Private] Using repo: {REPO_ID}")
|
| 95 |
|
| 96 |
-
# 1) Load python modules (best-effort
|
| 97 |
for fname, cls_name in PY_MODULES.items():
|
| 98 |
try:
|
| 99 |
print(f"[Private] Downloading module file: {fname}")
|
|
@@ -120,8 +116,6 @@ else:
|
|
| 120 |
repo_type="model",
|
| 121 |
)
|
| 122 |
print(f"[Private] Downloaded Excel at: {drug_xlsx_path}")
|
| 123 |
-
|
| 124 |
-
# Debug: verify read
|
| 125 |
df_debug = pd.read_excel(drug_xlsx_path, nrows=3)
|
| 126 |
print(
|
| 127 |
f"[Private] Excel loaded successfully. "
|
|
@@ -238,20 +232,17 @@ DTYPE_BF16 = torch.bfloat16 if use_cuda else torch.float32
|
|
| 238 |
# ============================================================
|
| 239 |
# OCR MODELS: Chandra-OCR + Dots.OCR
|
| 240 |
# ============================================================
|
| 241 |
-
# 1) Chandra-OCR (Qwen3VL)
|
| 242 |
MODEL_ID_V = "datalab-to/chandra"
|
| 243 |
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
|
| 244 |
model_v = Qwen3VLForConditionalGeneration.from_pretrained(
|
| 245 |
MODEL_ID_V, trust_remote_code=True, torch_dtype=DTYPE_FP16
|
| 246 |
).to(device).eval()
|
| 247 |
|
| 248 |
-
# 2) Dots.OCR (flash_attn2 if available, else SDPA)
|
| 249 |
MODEL_PATH_D = "prithivMLmods/Dots.OCR-Latest-BF16"
|
| 250 |
processor_d = AutoProcessor.from_pretrained(MODEL_PATH_D, trust_remote_code=True)
|
| 251 |
attn_impl = "sdpa"
|
| 252 |
try:
|
| 253 |
import flash_attn # noqa: F401
|
| 254 |
-
|
| 255 |
if use_cuda:
|
| 256 |
attn_impl = "flash_attention_2"
|
| 257 |
except Exception:
|
|
@@ -268,9 +259,7 @@ if not use_cuda:
|
|
| 268 |
model_d.to(device)
|
| 269 |
|
| 270 |
# ============================================================
|
| 271 |
-
# GENERATION (
|
| 272 |
-
# ClinicalNER is used ONLY for Dots.OCR.
|
| 273 |
-
# Single output: Markdown only (no raw stream exposed).
|
| 274 |
# ============================================================
|
| 275 |
MAX_MAX_NEW_TOKENS = 4096
|
| 276 |
DEFAULT_MAX_NEW_TOKENS = 2048
|
|
@@ -287,229 +276,208 @@ def generate_image(
|
|
| 287 |
top_k: int,
|
| 288 |
repetition_penalty: float,
|
| 289 |
spell_algo: str,
|
| 290 |
-
):
|
| 291 |
"""
|
| 292 |
Returns a single Markdown string:
|
| 293 |
- Medications (extracted)
|
| 294 |
- Spell-check suggestions
|
| 295 |
No raw OCR text is returned to the UI.
|
| 296 |
"""
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
messages, tokenize=False, add_generation_prompt=True
|
| 323 |
-
)
|
| 324 |
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
tokenizer, skip_prompt=True, skip_special_tokens=True
|
| 335 |
-
)
|
| 336 |
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
do_sample=True,
|
| 342 |
-
temperature=temperature,
|
| 343 |
-
top_p=top_p,
|
| 344 |
-
top_k=top_k,
|
| 345 |
-
repetition_penalty=repetition_penalty,
|
| 346 |
-
)
|
| 347 |
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
# 2) Medications extraction
|
| 367 |
-
# --------------------------------------------------------
|
| 368 |
-
meds: List[str] = []
|
| 369 |
-
|
| 370 |
-
if model_name == "Dots.OCR":
|
| 371 |
-
# ClinicalNER ONLY for Dots.OCR
|
| 372 |
-
try:
|
| 373 |
-
if "ClinicalNER" in priv_classes and HF_TOKEN is not None:
|
| 374 |
-
ClinicalNER = priv_classes["ClinicalNER"]
|
| 375 |
-
ner = ClinicalNER(token=HF_TOKEN)
|
| 376 |
-
ner_output = ner(final_ocr_text) or []
|
| 377 |
meds = [
|
| 378 |
-
|
| 379 |
-
for
|
| 380 |
-
if
|
| 381 |
]
|
| 382 |
-
print("[NER] (Dots.OCR)
|
| 383 |
-
else:
|
| 384 |
-
print("[NER] ClinicalNER unavailable or missing HF token; skipping.")
|
| 385 |
-
except Exception as e:
|
| 386 |
-
print(f"[NER] Error running ClinicalNER: {e}")
|
| 387 |
|
| 388 |
-
#
|
| 389 |
-
if not meds:
|
| 390 |
meds = [
|
| 391 |
line.strip()
|
| 392 |
for line in final_ocr_text.splitlines()
|
| 393 |
if line.strip()
|
| 394 |
]
|
| 395 |
-
print("[NER] (
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
# --------------------------------------------------------
|
| 410 |
-
# 3) Build Markdown base: Medications only (no Raw OCR)
|
| 411 |
-
# --------------------------------------------------------
|
| 412 |
-
md = "### Medications (extracted)\n"
|
| 413 |
-
if meds:
|
| 414 |
-
for m in meds:
|
| 415 |
-
md += f"- {m}\n"
|
| 416 |
-
else:
|
| 417 |
-
md += "- None detected\n"
|
| 418 |
-
|
| 419 |
-
# --------------------------------------------------------
|
| 420 |
-
# 4) Spell-check (med list) with CER
|
| 421 |
-
# --------------------------------------------------------
|
| 422 |
-
spell_section = "\n---\n### Spell-check suggestions (" + spell_algo + ")\n"
|
| 423 |
-
corr: Dict[str, List] = {}
|
| 424 |
-
|
| 425 |
-
if BACKEND_INIT_ERROR:
|
| 426 |
-
spell_section += f"- [DEBUG] Backend init error: {BACKEND_INIT_ERROR}\n"
|
| 427 |
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
print(
|
| 434 |
-
f"[Spell DEBUG] Excel read OK: path={drug_xlsx_path}, "
|
| 435 |
-
f"shape={df_dbg.shape}, cols={list(df_dbg.columns)}"
|
| 436 |
-
)
|
| 437 |
-
spell_section += (
|
| 438 |
-
f"- [DEBUG] Excel read OK; shape={df_dbg.shape}, "
|
| 439 |
-
f"cols={list(df_dbg.columns)}\n"
|
| 440 |
-
)
|
| 441 |
-
except Exception as e:
|
| 442 |
-
print(f"[Spell DEBUG] ERROR reading Excel in generate_image: {e}")
|
| 443 |
-
spell_section += f"- [DEBUG] Excel read error: {e}\n"
|
| 444 |
-
|
| 445 |
-
# Pick matcher based on spell_algo
|
| 446 |
-
if (
|
| 447 |
-
spell_algo == "TF-IDF + Phonetic"
|
| 448 |
-
and "TfidfPhoneticMatcher" in priv_classes
|
| 449 |
-
):
|
| 450 |
-
print("[Spell DEBUG] Using TfidfPhoneticMatcher")
|
| 451 |
-
Cls = priv_classes["TfidfPhoneticMatcher"]
|
| 452 |
-
checker = Cls(
|
| 453 |
-
xlsx_path=drug_xlsx_path,
|
| 454 |
-
column="Combined_Drugs",
|
| 455 |
-
ngram_size=3,
|
| 456 |
-
phonetic_weight=0.4,
|
| 457 |
-
)
|
| 458 |
-
corr = checker.match_list(meds, top_k=5, tfidf_threshold=0.15)
|
| 459 |
-
|
| 460 |
-
elif spell_algo == "SymSpell" and "SymSpellMatcher" in priv_classes:
|
| 461 |
-
print("[Spell DEBUG] Using SymSpellMatcher")
|
| 462 |
-
Cls = priv_classes["SymSpellMatcher"]
|
| 463 |
-
checker = Cls(
|
| 464 |
-
xlsx_path=drug_xlsx_path,
|
| 465 |
-
column="Combined_Drugs",
|
| 466 |
-
max_edit=2,
|
| 467 |
-
prefix_len=7,
|
| 468 |
-
)
|
| 469 |
-
corr = checker.match_list(meds, top_k=5, min_score=0.4)
|
| 470 |
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
Cls = priv_classes["RapidFuzzMatcher"]
|
| 474 |
-
checker = Cls(xlsx_path=drug_xlsx_path, column="Combined_Drugs")
|
| 475 |
-
corr = checker.match_list(meds, top_k=5, threshold=70.0)
|
| 476 |
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 490 |
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
suggestions = corr.get(raw, [])
|
| 499 |
-
if suggestions:
|
| 500 |
-
spell_section += f"- **{raw}**\n"
|
| 501 |
-
for cand, score in suggestions:
|
| 502 |
-
cer = character_error_rate(cand, raw)
|
| 503 |
spell_section += (
|
| 504 |
-
|
|
|
|
| 505 |
)
|
| 506 |
else:
|
| 507 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 508 |
|
| 509 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 510 |
|
| 511 |
-
|
| 512 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 513 |
|
| 514 |
|
| 515 |
# ============================================================
|
|
@@ -620,8 +588,6 @@ if __name__ == "__main__":
|
|
| 620 |
|
| 621 |
|
| 622 |
|
| 623 |
-
|
| 624 |
-
|
| 625 |
###################################### version 4 #########################################
|
| 626 |
|
| 627 |
|
|
|
|
| 2 |
|
| 3 |
|
| 4 |
import os
|
|
|
|
|
|
|
| 5 |
from typing import Iterable, Dict, Any, Optional, List
|
| 6 |
+
from threading import Thread # no longer needed but harmless if left
|
| 7 |
+
import time # no longer needed but harmless if left
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
import spaces
|
| 11 |
import torch
|
| 12 |
from PIL import Image
|
| 13 |
+
import pandas as pd
|
| 14 |
|
| 15 |
from transformers import (
|
| 16 |
Qwen3VLForConditionalGeneration,
|
| 17 |
AutoModelForCausalLM,
|
| 18 |
AutoProcessor,
|
|
|
|
| 19 |
)
|
| 20 |
|
| 21 |
from gradio.themes import Soft
|
|
|
|
| 25 |
# Character Error Rate (CER)
|
| 26 |
# ============================================================
|
| 27 |
|
|
|
|
| 28 |
def levenshtein(a: str, b: str) -> int:
|
| 29 |
"""Levenshtein distance to calculate CER."""
|
| 30 |
a, b = a.lower(), b.lower()
|
|
|
|
| 61 |
|
| 62 |
REPO_ID = "IFMedTech/Medibot_OCR_model" # private backend repo
|
| 63 |
|
|
|
|
| 64 |
PY_MODULES: Dict[str, str] = {
|
| 65 |
"clinical_NER.py": "ClinicalNER",
|
| 66 |
"tf_idf_phonetic.py": "TfidfPhoneticMatcher",
|
|
|
|
| 70 |
|
| 71 |
HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN") # must be set in Space secrets
|
| 72 |
|
|
|
|
| 73 |
def _dynamic_import(module_path: str, class_name: str):
|
| 74 |
spec = importlib.util.spec_from_file_location(class_name, module_path)
|
| 75 |
module = importlib.util.module_from_spec(spec)
|
|
|
|
| 89 |
else:
|
| 90 |
print(f"[Private] Using repo: {REPO_ID}")
|
| 91 |
|
| 92 |
+
# 1) Load python modules (best-effort)
|
| 93 |
for fname, cls_name in PY_MODULES.items():
|
| 94 |
try:
|
| 95 |
print(f"[Private] Downloading module file: {fname}")
|
|
|
|
| 116 |
repo_type="model",
|
| 117 |
)
|
| 118 |
print(f"[Private] Downloaded Excel at: {drug_xlsx_path}")
|
|
|
|
|
|
|
| 119 |
df_debug = pd.read_excel(drug_xlsx_path, nrows=3)
|
| 120 |
print(
|
| 121 |
f"[Private] Excel loaded successfully. "
|
|
|
|
| 232 |
# ============================================================
|
| 233 |
# OCR MODELS: Chandra-OCR + Dots.OCR
|
| 234 |
# ============================================================
|
|
|
|
| 235 |
MODEL_ID_V = "datalab-to/chandra"
|
| 236 |
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
|
| 237 |
model_v = Qwen3VLForConditionalGeneration.from_pretrained(
|
| 238 |
MODEL_ID_V, trust_remote_code=True, torch_dtype=DTYPE_FP16
|
| 239 |
).to(device).eval()
|
| 240 |
|
|
|
|
| 241 |
MODEL_PATH_D = "prithivMLmods/Dots.OCR-Latest-BF16"
|
| 242 |
processor_d = AutoProcessor.from_pretrained(MODEL_PATH_D, trust_remote_code=True)
|
| 243 |
attn_impl = "sdpa"
|
| 244 |
try:
|
| 245 |
import flash_attn # noqa: F401
|
|
|
|
| 246 |
if use_cuda:
|
| 247 |
attn_impl = "flash_attention_2"
|
| 248 |
except Exception:
|
|
|
|
| 259 |
model_d.to(device)
|
| 260 |
|
| 261 |
# ============================================================
|
| 262 |
+
# GENERATION (no raw output UI; one markdown return)
|
|
|
|
|
|
|
| 263 |
# ============================================================
|
| 264 |
MAX_MAX_NEW_TOKENS = 4096
|
| 265 |
DEFAULT_MAX_NEW_TOKENS = 2048
|
|
|
|
| 276 |
top_k: int,
|
| 277 |
repetition_penalty: float,
|
| 278 |
spell_algo: str,
|
| 279 |
+
) -> str:
|
| 280 |
"""
|
| 281 |
Returns a single Markdown string:
|
| 282 |
- Medications (extracted)
|
| 283 |
- Spell-check suggestions
|
| 284 |
No raw OCR text is returned to the UI.
|
| 285 |
"""
|
| 286 |
+
try:
|
| 287 |
+
if image is None:
|
| 288 |
+
return "Please upload an image."
|
| 289 |
+
|
| 290 |
+
# Choose processor/model
|
| 291 |
+
if model_name == "Chandra-OCR":
|
| 292 |
+
processor, model = processor_v, model_v
|
| 293 |
+
elif model_name == "Dots.OCR":
|
| 294 |
+
processor, model = processor_d, model_d
|
| 295 |
+
else:
|
| 296 |
+
return "Invalid model selected."
|
| 297 |
+
|
| 298 |
+
# Build prompt
|
| 299 |
+
messages = [
|
| 300 |
+
{
|
| 301 |
+
"role": "user",
|
| 302 |
+
"content": [
|
| 303 |
+
{"type": "image"},
|
| 304 |
+
{"type": "text", "text": text},
|
| 305 |
+
],
|
| 306 |
+
}
|
| 307 |
+
]
|
| 308 |
+
prompt_full = processor.apply_chat_template(
|
| 309 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 310 |
+
)
|
|
|
|
|
|
|
| 311 |
|
| 312 |
+
# Preprocess
|
| 313 |
+
inputs = processor(
|
| 314 |
+
text=[prompt_full], images=[image], return_tensors="pt", padding=True
|
| 315 |
+
)
|
| 316 |
+
inputs = {k: (v.to(device) if hasattr(v, "to") else v) for k, v in inputs.items()}
|
| 317 |
+
|
| 318 |
+
# Generate (no streaming)
|
| 319 |
+
gen_kwargs = dict(
|
| 320 |
+
**inputs,
|
| 321 |
+
max_new_tokens=max_new_tokens,
|
| 322 |
+
do_sample=True,
|
| 323 |
+
temperature=temperature,
|
| 324 |
+
top_p=top_p,
|
| 325 |
+
top_k=top_k,
|
| 326 |
+
repetition_penalty=repetition_penalty,
|
| 327 |
+
)
|
| 328 |
+
outputs = model.generate(**gen_kwargs)
|
| 329 |
|
| 330 |
+
tokenizer = getattr(processor, "tokenizer", None) or processor
|
| 331 |
+
generated = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 332 |
+
final_ocr_text = generated.strip()
|
|
|
|
|
|
|
| 333 |
|
| 334 |
+
# --------------------------------------------------------
|
| 335 |
+
# 2) Medications extraction
|
| 336 |
+
# --------------------------------------------------------
|
| 337 |
+
meds: List[str] = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
|
| 339 |
+
if model_name == "Dots.OCR":
|
| 340 |
+
try:
|
| 341 |
+
if "ClinicalNER" in priv_classes and HF_TOKEN is not None:
|
| 342 |
+
ClinicalNER = priv_classes["ClinicalNER"]
|
| 343 |
+
ner = ClinicalNER(token=HF_TOKEN)
|
| 344 |
+
ner_output = ner(final_ocr_text) or []
|
| 345 |
+
meds = [
|
| 346 |
+
m.strip()
|
| 347 |
+
for m in ner_output
|
| 348 |
+
if isinstance(m, str) and m.strip()
|
| 349 |
+
]
|
| 350 |
+
print("[NER] (Dots.OCR) ClinicalNER meds:", meds)
|
| 351 |
+
else:
|
| 352 |
+
print("[NER] ClinicalNER unavailable or missing HF token; skipping.")
|
| 353 |
+
except Exception as e:
|
| 354 |
+
print(f"[NER] Error running ClinicalNER: {e}")
|
| 355 |
+
|
| 356 |
+
if not meds:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
meds = [
|
| 358 |
+
line.strip()
|
| 359 |
+
for line in final_ocr_text.splitlines()
|
| 360 |
+
if line.strip()
|
| 361 |
]
|
| 362 |
+
print("[NER] (Dots.OCR) Fallback to lines, count:", len(meds))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
|
| 364 |
+
else: # Chandra-OCR
|
|
|
|
| 365 |
meds = [
|
| 366 |
line.strip()
|
| 367 |
for line in final_ocr_text.splitlines()
|
| 368 |
if line.strip()
|
| 369 |
]
|
| 370 |
+
print("[NER] (Chandra-OCR) Line-based meds only, count:", len(meds))
|
| 371 |
+
|
| 372 |
+
print("[DEBUG] meds count:", len(meds))
|
| 373 |
+
print("[DEBUG] drug_xlsx_path in generate_image:", drug_xlsx_path)
|
| 374 |
+
|
| 375 |
+
# --------------------------------------------------------
|
| 376 |
+
# 3) Markdown: Medications only (no Raw OCR section)
|
| 377 |
+
# --------------------------------------------------------
|
| 378 |
+
md = "### Medications (extracted)\n"
|
| 379 |
+
if meds:
|
| 380 |
+
for m in meds:
|
| 381 |
+
md += f"- {m}\n"
|
| 382 |
+
else:
|
| 383 |
+
md += "- None detected\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
|
| 385 |
+
# --------------------------------------------------------
|
| 386 |
+
# 4) Spell-check (med list) with CER
|
| 387 |
+
# --------------------------------------------------------
|
| 388 |
+
spell_section = "\n---\n### Spell-check suggestions (" + spell_algo + ")\n"
|
| 389 |
+
corr: Dict[str, List] = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
|
| 391 |
+
if BACKEND_INIT_ERROR:
|
| 392 |
+
spell_section += f"- [DEBUG] Backend init error: {BACKEND_INIT_ERROR}\n"
|
|
|
|
|
|
|
|
|
|
| 393 |
|
| 394 |
+
try:
|
| 395 |
+
if meds and drug_xlsx_path:
|
| 396 |
+
try:
|
| 397 |
+
df_dbg = pd.read_excel(drug_xlsx_path)
|
| 398 |
+
print(
|
| 399 |
+
f"[Spell DEBUG] Excel read OK: path={drug_xlsx_path}, "
|
| 400 |
+
f"shape={df_dbg.shape}, cols={list(df_dbg.columns)}"
|
| 401 |
+
)
|
| 402 |
+
spell_section += (
|
| 403 |
+
f"- [DEBUG] Excel read OK; shape={df_dbg.shape}, "
|
| 404 |
+
f"cols={list(df_dbg.columns)}\n"
|
| 405 |
+
)
|
| 406 |
+
except Exception as e:
|
| 407 |
+
print(f"[Spell DEBUG] ERROR reading Excel in generate_image: {e}")
|
| 408 |
+
spell_section += f"- [DEBUG] Excel read error: {e}\n"
|
| 409 |
+
|
| 410 |
+
if (
|
| 411 |
+
spell_algo == "TF-IDF + Phonetic"
|
| 412 |
+
and "TfidfPhoneticMatcher" in priv_classes
|
| 413 |
+
):
|
| 414 |
+
print("[Spell DEBUG] Using TfidfPhoneticMatcher")
|
| 415 |
+
Cls = priv_classes["TfidfPhoneticMatcher"]
|
| 416 |
+
checker = Cls(
|
| 417 |
+
xlsx_path=drug_xlsx_path,
|
| 418 |
+
column="Combined_Drugs",
|
| 419 |
+
ngram_size=3,
|
| 420 |
+
phonetic_weight=0.4,
|
| 421 |
+
)
|
| 422 |
+
corr = checker.match_list(meds, top_k=5, tfidf_threshold=0.15)
|
| 423 |
+
|
| 424 |
+
elif spell_algo == "SymSpell" and "SymSpellMatcher" in priv_classes:
|
| 425 |
+
print("[Spell DEBUG] Using SymSpellMatcher")
|
| 426 |
+
Cls = priv_classes["SymSpellMatcher"]
|
| 427 |
+
checker = Cls(
|
| 428 |
+
xlsx_path=drug_xlsx_path,
|
| 429 |
+
column="Combined_Drugs",
|
| 430 |
+
max_edit=2,
|
| 431 |
+
prefix_len=7,
|
| 432 |
+
)
|
| 433 |
+
corr = checker.match_list(meds, top_k=5, min_score=0.4)
|
| 434 |
|
| 435 |
+
elif spell_algo == "RapidFuzz" and "RapidFuzzMatcher" in priv_classes:
|
| 436 |
+
print("[Spell DEBUG] Using RapidFuzzMatcher")
|
| 437 |
+
Cls = priv_classes["RapidFuzzMatcher"]
|
| 438 |
+
checker = Cls(xlsx_path=drug_xlsx_path, column="Combined_Drugs")
|
| 439 |
+
corr = checker.match_list(meds, top_k=5, threshold=70.0)
|
| 440 |
+
|
| 441 |
+
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 442 |
spell_section += (
|
| 443 |
+
"- Spell-check backend unavailable "
|
| 444 |
+
"(no matcher class for selected algorithm).\n"
|
| 445 |
)
|
| 446 |
else:
|
| 447 |
+
if not meds:
|
| 448 |
+
spell_section += "- No medications extracted (empty med list).\n"
|
| 449 |
+
if not drug_xlsx_path:
|
| 450 |
+
spell_section += (
|
| 451 |
+
"- Drug Excel dictionary path missing "
|
| 452 |
+
"(drug_xlsx_path is None).\n"
|
| 453 |
+
)
|
| 454 |
|
| 455 |
+
except Exception as e:
|
| 456 |
+
print(f"[Spell DEBUG] Spell-check error: {e}")
|
| 457 |
+
spell_section += f"- Spell-check error: {e}\n"
|
| 458 |
+
|
| 459 |
+
if corr:
|
| 460 |
+
for raw in meds:
|
| 461 |
+
suggestions = corr.get(raw, [])
|
| 462 |
+
if suggestions:
|
| 463 |
+
spell_section += f"- **{raw}**\n"
|
| 464 |
+
for cand, score in suggestions:
|
| 465 |
+
cer = character_error_rate(cand, raw)
|
| 466 |
+
spell_section += (
|
| 467 |
+
f" - {cand} (score={score:.3f}, CER={cer:.3f}%)\n"
|
| 468 |
+
)
|
| 469 |
+
else:
|
| 470 |
+
spell_section += f"- **{raw}**\n - (no suggestions)\n"
|
| 471 |
+
|
| 472 |
+
final_md = md + spell_section
|
| 473 |
+
return final_md
|
| 474 |
|
| 475 |
+
except Exception as e:
|
| 476 |
+
# Catch-all so the GPU worker does not crash
|
| 477 |
+
print(f"[ERROR] generate_image crashed: {e}")
|
| 478 |
+
import traceback
|
| 479 |
+
traceback.print_exc()
|
| 480 |
+
return f"Error while processing: {e}"
|
| 481 |
|
| 482 |
|
| 483 |
# ============================================================
|
|
|
|
| 588 |
|
| 589 |
|
| 590 |
|
|
|
|
|
|
|
| 591 |
###################################### version 4 #########################################
|
| 592 |
|
| 593 |
|