Jasur05 commited on
Commit
437a6de
·
verified ·
1 Parent(s): 1f88afb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -5,21 +5,20 @@ from medmnist import INFO
5
  from model import load_model
6
  from PIL import Image
7
 
8
- # Class names
9
  info = INFO["dermamnist"]
10
  class_names = list(info["label"].values())
11
 
12
- # Load model
13
  model = load_model()
14
 
15
- # Transforms (match training)
16
  transform = transforms.Compose([
17
  transforms.Resize((224, 224)),
18
  transforms.ToTensor(),
19
  transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
20
  ])
21
 
22
- # Prediction function
23
  def predict(image):
24
  if image is None:
25
  return {"Error": 1.0}
@@ -32,13 +31,13 @@ def predict(image):
32
 
33
  return {class_names[i]: float(probs[i]) for i in range(len(class_names))}
34
 
35
- # Gradio UI
36
  demo = gr.Interface(
37
  fn=predict,
38
  inputs=gr.Image(type="pil"),
39
  outputs=gr.Label(num_top_classes=3),
40
  title="Skin Disease Classifier",
41
- description="Upload a skin image and the model will predict potential skin cancer(melanoma), tumor or moles using EfficientNet-B2 fine-tuned on DermMNIST."
42
  )
43
 
44
  if __name__ == "__main__":
 
5
  from model import load_model
6
  from PIL import Image
7
 
8
+
9
  info = INFO["dermamnist"]
10
  class_names = list(info["label"].values())
11
 
12
+
13
  model = load_model()
14
 
 
15
  transform = transforms.Compose([
16
  transforms.Resize((224, 224)),
17
  transforms.ToTensor(),
18
  transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
19
  ])
20
 
21
+
22
  def predict(image):
23
  if image is None:
24
  return {"Error": 1.0}
 
31
 
32
  return {class_names[i]: float(probs[i]) for i in range(len(class_names))}
33
 
34
+
35
  demo = gr.Interface(
36
  fn=predict,
37
  inputs=gr.Image(type="pil"),
38
  outputs=gr.Label(num_top_classes=3),
39
  title="Skin Disease Classifier",
40
+ description="Upload a skin image and our model will predict potential skin cancer(melanoma), tumor or moles using EfficientNet-B2 fine-tuned on DermMNIST."
41
  )
42
 
43
  if __name__ == "__main__":