Update app.py
Browse files
app.py
CHANGED
|
@@ -5,21 +5,20 @@ from medmnist import INFO
|
|
| 5 |
from model import load_model
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
-
|
| 9 |
info = INFO["dermamnist"]
|
| 10 |
class_names = list(info["label"].values())
|
| 11 |
|
| 12 |
-
|
| 13 |
model = load_model()
|
| 14 |
|
| 15 |
-
# Transforms (match training)
|
| 16 |
transform = transforms.Compose([
|
| 17 |
transforms.Resize((224, 224)),
|
| 18 |
transforms.ToTensor(),
|
| 19 |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 20 |
])
|
| 21 |
|
| 22 |
-
|
| 23 |
def predict(image):
|
| 24 |
if image is None:
|
| 25 |
return {"Error": 1.0}
|
|
@@ -32,13 +31,13 @@ def predict(image):
|
|
| 32 |
|
| 33 |
return {class_names[i]: float(probs[i]) for i in range(len(class_names))}
|
| 34 |
|
| 35 |
-
|
| 36 |
demo = gr.Interface(
|
| 37 |
fn=predict,
|
| 38 |
inputs=gr.Image(type="pil"),
|
| 39 |
outputs=gr.Label(num_top_classes=3),
|
| 40 |
title="Skin Disease Classifier",
|
| 41 |
-
description="Upload a skin image and
|
| 42 |
)
|
| 43 |
|
| 44 |
if __name__ == "__main__":
|
|
|
|
| 5 |
from model import load_model
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
+
|
| 9 |
info = INFO["dermamnist"]
|
| 10 |
class_names = list(info["label"].values())
|
| 11 |
|
| 12 |
+
|
| 13 |
model = load_model()
|
| 14 |
|
|
|
|
| 15 |
transform = transforms.Compose([
|
| 16 |
transforms.Resize((224, 224)),
|
| 17 |
transforms.ToTensor(),
|
| 18 |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
| 19 |
])
|
| 20 |
|
| 21 |
+
|
| 22 |
def predict(image):
|
| 23 |
if image is None:
|
| 24 |
return {"Error": 1.0}
|
|
|
|
| 31 |
|
| 32 |
return {class_names[i]: float(probs[i]) for i in range(len(class_names))}
|
| 33 |
|
| 34 |
+
|
| 35 |
demo = gr.Interface(
|
| 36 |
fn=predict,
|
| 37 |
inputs=gr.Image(type="pil"),
|
| 38 |
outputs=gr.Label(num_top_classes=3),
|
| 39 |
title="Skin Disease Classifier",
|
| 40 |
+
description="Upload a skin image and our model will predict potential skin cancer(melanoma), tumor or moles using EfficientNet-B2 fine-tuned on DermMNIST."
|
| 41 |
)
|
| 42 |
|
| 43 |
if __name__ == "__main__":
|