Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,1369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Tone Classification System
|
| 2 |
+
# This implementation combines text and acoustic features to detect emotions,
|
| 3 |
+
# including sarcasm and figures of speech
|
| 4 |
+
# Part 1: Install required packages with improved error handling
|
| 5 |
+
import sys
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
# Function to install packages with error handling
|
| 9 |
+
def install_packages():
|
| 10 |
+
packages = [
|
| 11 |
+
"hf_xet","transformers", "pytorch-lightning", "datasets",
|
| 12 |
+
"numpy", "pandas", "matplotlib", "seaborn",
|
| 13 |
+
"librosa", "opensmile", "torch", "torchaudio",
|
| 14 |
+
"accelerate", "nltk", "scikit-learn"
|
| 15 |
+
]
|
| 16 |
+
|
| 17 |
+
for package in packages:
|
| 18 |
+
try:
|
| 19 |
+
print(f"Installing {package}...")
|
| 20 |
+
!pip install {package} -q
|
| 21 |
+
print(f"Successfully installed {package}")
|
| 22 |
+
except Exception as e:
|
| 23 |
+
print(f"Error installing {package}: {e}")
|
| 24 |
+
|
| 25 |
+
print("Package installation completed!")
|
| 26 |
+
|
| 27 |
+
install_packages()
|
| 28 |
+
|
| 29 |
+
# Part 2: Import libraries with error handling
|
| 30 |
+
import numpy as np
|
| 31 |
+
import pandas as pd
|
| 32 |
+
import torch
|
| 33 |
+
import matplotlib.pyplot as plt
|
| 34 |
+
import seaborn as sns
|
| 35 |
+
from sklearn.model_selection import train_test_split
|
| 36 |
+
from sklearn.metrics import confusion_matrix, classification_report
|
| 37 |
+
from torch.utils.data import Dataset, DataLoader
|
| 38 |
+
import torch.nn as nn
|
| 39 |
+
import torch.nn.functional as F
|
| 40 |
+
import torch.optim as optim
|
| 41 |
+
|
| 42 |
+
# Check for CUDA availability
|
| 43 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 44 |
+
print(f"Using device: {DEVICE}")
|
| 45 |
+
|
| 46 |
+
# Try to import libraries that might cause issues with specific error handling
|
| 47 |
+
try:
|
| 48 |
+
import torchaudio
|
| 49 |
+
print("Successfully imported torchaudio")
|
| 50 |
+
except Exception as e:
|
| 51 |
+
print(f"Error importing torchaudio: {e}")
|
| 52 |
+
print("Some audio functionality may be limited")
|
| 53 |
+
|
| 54 |
+
try:
|
| 55 |
+
import librosa
|
| 56 |
+
print("Successfully imported librosa")
|
| 57 |
+
except Exception as e:
|
| 58 |
+
print(f"Error importing librosa: {e}")
|
| 59 |
+
print("Audio processing capabilities will be limited")
|
| 60 |
+
|
| 61 |
+
try:
|
| 62 |
+
import opensmile
|
| 63 |
+
print("Successfully imported opensmile")
|
| 64 |
+
except Exception as e:
|
| 65 |
+
print(f"Error importing opensmile: {e}")
|
| 66 |
+
print("Will use fallback feature extraction methods")
|
| 67 |
+
|
| 68 |
+
# Part 3: Define constants
|
| 69 |
+
EMOTIONS = ["neutral", "happy", "sad", "angry", "fearful", "disgust", "surprised", "sarcastic"]
|
| 70 |
+
MODEL_CACHE_DIR = "./model_cache"
|
| 71 |
+
|
| 72 |
+
# Create cache directory if it doesn't exist
|
| 73 |
+
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
|
| 74 |
+
print(f"Using model cache directory: {MODEL_CACHE_DIR}")
|
| 75 |
+
|
| 76 |
+
# Part 4: Model Loading with Error Handling and Cache
|
| 77 |
+
def load_model_with_cache(model_class, model_name, cache_subdir=""):
|
| 78 |
+
"""Load a model with proper error handling and caching"""
|
| 79 |
+
cache_path = os.path.join(MODEL_CACHE_DIR, cache_subdir)
|
| 80 |
+
os.makedirs(cache_path, exist_ok=True)
|
| 81 |
+
|
| 82 |
+
print(f"Loading model: {model_name}")
|
| 83 |
+
try:
|
| 84 |
+
model = model_class.from_pretrained(
|
| 85 |
+
model_name,
|
| 86 |
+
cache_dir=cache_path,
|
| 87 |
+
local_files_only=os.path.exists(os.path.join(cache_path, model_name.replace('/', '-')))
|
| 88 |
+
)
|
| 89 |
+
print(f"Successfully loaded model: {model_name}")
|
| 90 |
+
return model
|
| 91 |
+
except KeyboardInterrupt:
|
| 92 |
+
print("\nModel download interrupted. Try again or download manually.")
|
| 93 |
+
return None
|
| 94 |
+
except Exception as e:
|
| 95 |
+
print(f"Error loading model {model_name}: {e}")
|
| 96 |
+
print("Will try to continue with limited functionality.")
|
| 97 |
+
return None
|
| 98 |
+
|
| 99 |
+
# Part 5: Modified Whisper Transcriber with Error Handling
|
| 100 |
+
class WhisperTranscriber:
|
| 101 |
+
def __init__(self, model_size="tiny"): # Changed from base to tiny for faster loading
|
| 102 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 103 |
+
print("Initializing Whisper transcriber...")
|
| 104 |
+
|
| 105 |
+
try:
|
| 106 |
+
self.processor = load_model_with_cache(
|
| 107 |
+
WhisperProcessor,
|
| 108 |
+
f"openai/whisper-{model_size}",
|
| 109 |
+
"whisper"
|
| 110 |
+
)
|
| 111 |
+
self.model = load_model_with_cache(
|
| 112 |
+
WhisperForConditionalGeneration,
|
| 113 |
+
f"openai/whisper-{model_size}",
|
| 114 |
+
"whisper"
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
if self.model is not None:
|
| 118 |
+
self.model = self.model.to(DEVICE)
|
| 119 |
+
print("Whisper model loaded successfully and moved to device")
|
| 120 |
+
else:
|
| 121 |
+
print("Failed to load Whisper model")
|
| 122 |
+
|
| 123 |
+
except Exception as e:
|
| 124 |
+
print(f"Error initializing Whisper: {e}")
|
| 125 |
+
self.processor = None
|
| 126 |
+
self.model = None
|
| 127 |
+
|
| 128 |
+
def transcribe(self, audio_path):
|
| 129 |
+
if self.processor is None or self.model is None:
|
| 130 |
+
print("Whisper not properly initialized. Cannot transcribe.")
|
| 131 |
+
return "Error: Transcription failed."
|
| 132 |
+
|
| 133 |
+
try:
|
| 134 |
+
# Load audio
|
| 135 |
+
waveform, sample_rate = librosa.load(audio_path, sr=16000)
|
| 136 |
+
|
| 137 |
+
# Process audio
|
| 138 |
+
input_features = self.processor(waveform, sampling_rate=16000, return_tensors="pt").input_features.to(DEVICE)
|
| 139 |
+
|
| 140 |
+
# Generate transcription
|
| 141 |
+
with torch.no_grad():
|
| 142 |
+
predicted_ids = self.model.generate(input_features, max_length=100)
|
| 143 |
+
|
| 144 |
+
# Decode the transcription
|
| 145 |
+
transcription = self.processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
| 146 |
+
return transcription
|
| 147 |
+
|
| 148 |
+
except Exception as e:
|
| 149 |
+
print(f"Error in transcription: {e}")
|
| 150 |
+
return "Error: Transcription failed."
|
| 151 |
+
|
| 152 |
+
# Part 6: Text-based Emotion Analysis with Fallback Options
|
| 153 |
+
# Improved Text-based Emotion Analysis
|
| 154 |
+
class TextEmotionClassifier:
|
| 155 |
+
def __init__(self):
|
| 156 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 157 |
+
print("Initializing text emotion classifier...")
|
| 158 |
+
|
| 159 |
+
# Primary emotion model
|
| 160 |
+
self.emotion_model_name = "j-hartmann/emotion-english-distilroberta-base"
|
| 161 |
+
self.tokenizer = load_model_with_cache(
|
| 162 |
+
AutoTokenizer,
|
| 163 |
+
self.emotion_model_name,
|
| 164 |
+
"text_emotion"
|
| 165 |
+
)
|
| 166 |
+
self.model = load_model_with_cache(
|
| 167 |
+
AutoModelForSequenceClassification,
|
| 168 |
+
self.emotion_model_name,
|
| 169 |
+
"text_emotion"
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
if self.model is not None:
|
| 173 |
+
self.model = self.model.to(DEVICE)
|
| 174 |
+
|
| 175 |
+
# Sentiment model for sarcasm detection
|
| 176 |
+
self.sentiment_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
|
| 177 |
+
self.sarcasm_tokenizer = load_model_with_cache(
|
| 178 |
+
AutoTokenizer,
|
| 179 |
+
self.sentiment_model_name,
|
| 180 |
+
"sentiment"
|
| 181 |
+
)
|
| 182 |
+
self.sarcasm_model = load_model_with_cache(
|
| 183 |
+
AutoModelForSequenceClassification,
|
| 184 |
+
self.sentiment_model_name,
|
| 185 |
+
"sentiment"
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
if self.sarcasm_model is not None:
|
| 189 |
+
self.sarcasm_model = self.sarcasm_model.to(DEVICE)
|
| 190 |
+
|
| 191 |
+
# Enhanced keyword-based analyzer as fallback and enhancement
|
| 192 |
+
self.keyword_analyzer = EnhancedKeywordEmotionAnalyzer()
|
| 193 |
+
|
| 194 |
+
def predict_emotion(self, text):
|
| 195 |
+
if self.tokenizer is None or self.model is None:
|
| 196 |
+
print("Text emotion model not properly initialized.")
|
| 197 |
+
# Use keyword-based analysis as primary method in this case
|
| 198 |
+
return self.keyword_analyzer.analyze(text)
|
| 199 |
+
|
| 200 |
+
try:
|
| 201 |
+
# Get model predictions
|
| 202 |
+
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(DEVICE)
|
| 203 |
+
with torch.no_grad():
|
| 204 |
+
outputs = self.model(**inputs)
|
| 205 |
+
|
| 206 |
+
# Get probabilities from model
|
| 207 |
+
model_probs = F.softmax(outputs.logits, dim=1).cpu().numpy()[0]
|
| 208 |
+
|
| 209 |
+
# Get keyword-based analysis
|
| 210 |
+
keyword_probs = self.keyword_analyzer.analyze(text)
|
| 211 |
+
|
| 212 |
+
# Combine both methods with weighting
|
| 213 |
+
# If text contains strong emotional keywords, give more weight to keyword analysis
|
| 214 |
+
keyword_strength = self.keyword_analyzer.get_keyword_strength(text)
|
| 215 |
+
|
| 216 |
+
# Adaptive weighting based on keyword strength
|
| 217 |
+
keyword_weight = min(0.6, keyword_strength * 0.1) # Cap at 0.6
|
| 218 |
+
model_weight = 1.0 - keyword_weight
|
| 219 |
+
|
| 220 |
+
# Combine predictions
|
| 221 |
+
combined_probs = (model_weight * model_probs) + (keyword_weight * keyword_probs)
|
| 222 |
+
|
| 223 |
+
# Normalize to ensure sum is 1
|
| 224 |
+
combined_probs = combined_probs / np.sum(combined_probs)
|
| 225 |
+
|
| 226 |
+
return combined_probs
|
| 227 |
+
|
| 228 |
+
except Exception as e:
|
| 229 |
+
print(f"Error in text emotion prediction: {e}")
|
| 230 |
+
# Fallback to keyword analysis
|
| 231 |
+
return self.keyword_analyzer.analyze(text)
|
| 232 |
+
|
| 233 |
+
def detect_sarcasm(self, text):
|
| 234 |
+
if self.sarcasm_tokenizer is None or self.sarcasm_model is None:
|
| 235 |
+
print("Sarcasm model not properly initialized.")
|
| 236 |
+
# Use keyword-based sarcasm detection as fallback
|
| 237 |
+
return self.keyword_analyzer.detect_sarcasm(text)
|
| 238 |
+
|
| 239 |
+
try:
|
| 240 |
+
inputs = self.sarcasm_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(DEVICE)
|
| 241 |
+
with torch.no_grad():
|
| 242 |
+
outputs = self.sarcasm_model(**inputs)
|
| 243 |
+
|
| 244 |
+
sentiment_probs = F.softmax(outputs.logits, dim=1).cpu().numpy()[0]
|
| 245 |
+
|
| 246 |
+
# Enhance with keyword-based sarcasm detection
|
| 247 |
+
keyword_sarcasm = self.keyword_analyzer.detect_sarcasm(text)
|
| 248 |
+
|
| 249 |
+
# If keyword analysis strongly suggests sarcasm, blend with model prediction
|
| 250 |
+
if keyword_sarcasm[2] > 0.5: # If sarcasm probability is high from keywords
|
| 251 |
+
# Give 40% weight to keyword analysis
|
| 252 |
+
combined_probs = 0.6 * sentiment_probs + 0.4 * keyword_sarcasm
|
| 253 |
+
return combined_probs
|
| 254 |
+
|
| 255 |
+
return sentiment_probs
|
| 256 |
+
|
| 257 |
+
except Exception as e:
|
| 258 |
+
print(f"Error in sarcasm detection: {e}")
|
| 259 |
+
# Fallback to keyword analysis
|
| 260 |
+
return self.keyword_analyzer.detect_sarcasm(text)
|
| 261 |
+
|
| 262 |
+
# Enhanced keyword-based emotion analyzer
|
| 263 |
+
class EnhancedKeywordEmotionAnalyzer:
|
| 264 |
+
def __init__(self):
|
| 265 |
+
# Enhanced emotion keywords with weights
|
| 266 |
+
self.emotion_keywords = {
|
| 267 |
+
"happy": [
|
| 268 |
+
("happy", 1.0), ("joy", 1.0), ("delight", 0.9), ("excited", 0.9),
|
| 269 |
+
("glad", 0.8), ("pleased", 0.8), ("cheerful", 0.9), ("smile", 0.7),
|
| 270 |
+
("enjoy", 0.8), ("wonderful", 0.8), ("great", 0.7), ("excellent", 0.8),
|
| 271 |
+
("thrilled", 1.0), ("ecstatic", 1.0), ("content", 0.7), ("satisfied", 0.7),
|
| 272 |
+
("pleasure", 0.8), ("fantastic", 0.9), ("awesome", 0.9), ("love", 0.9),
|
| 273 |
+
("amazing", 0.9), ("perfect", 0.8), ("fun", 0.8), ("delighted", 1.0)
|
| 274 |
+
],
|
| 275 |
+
"sad": [
|
| 276 |
+
("sad", 1.0), ("unhappy", 0.9), ("depressed", 1.0), ("sorrow", 1.0),
|
| 277 |
+
("grief", 1.0), ("tearful", 0.9), ("miserable", 1.0), ("disappointed", 0.8),
|
| 278 |
+
("upset", 0.8), ("down", 0.7), ("heartbroken", 1.0), ("gloomy", 0.9),
|
| 279 |
+
("devastated", 1.0), ("hurt", 0.8), ("blue", 0.7), ("regret", 0.8),
|
| 280 |
+
("dejected", 0.9), ("dismal", 0.9), ("lonely", 0.8), ("terrible", 0.8),
|
| 281 |
+
("hopeless", 0.9), ("lost", 0.7), ("crying", 0.9), ("tragic", 0.9)
|
| 282 |
+
],
|
| 283 |
+
"angry": [
|
| 284 |
+
("angry", 1.0), ("mad", 0.9), ("furious", 1.0), ("annoyed", 0.8),
|
| 285 |
+
("irritated", 0.8), ("enraged", 1.0), ("livid", 1.0), ("outraged", 1.0),
|
| 286 |
+
("frustrated", 0.8), ("infuriated", 1.0), ("pissed", 0.9), ("hate", 0.9),
|
| 287 |
+
("hostile", 0.9), ("bitter", 0.8), ("resentful", 0.8), ("fuming", 0.9),
|
| 288 |
+
("irate", 1.0), ("outraged", 1.0), ("seething", 1.0), ("cross", 0.7),
|
| 289 |
+
("exasperated", 0.8), ("disgusted", 0.8), ("indignant", 0.9), ("rage", 1.0)
|
| 290 |
+
],
|
| 291 |
+
"fearful": [
|
| 292 |
+
("afraid", 1.0), ("scared", 1.0), ("frightened", 1.0), ("fear", 0.9),
|
| 293 |
+
("terror", 1.0), ("panic", 1.0), ("horrified", 1.0), ("worried", 0.8),
|
| 294 |
+
("anxious", 0.9), ("nervous", 0.8), ("terrified", 1.0), ("dread", 0.9),
|
| 295 |
+
("alarmed", 0.8), ("petrified", 1.0), ("threatened", 0.8), ("intimidated", 0.8),
|
| 296 |
+
("apprehensive", 0.8), ("uneasy", 0.7), ("tense", 0.7), ("stressed", 0.7),
|
| 297 |
+
("spooked", 0.9), ("paranoid", 0.9), ("freaked", 0.9), ("jumpy", 0.8)
|
| 298 |
+
],
|
| 299 |
+
"disgust": [
|
| 300 |
+
("disgust", 1.0), ("gross", 0.9), ("repulsed", 1.0), ("revolted", 1.0),
|
| 301 |
+
("sick", 0.8), ("nauseous", 0.8), ("yuck", 0.9), ("ew", 0.8),
|
| 302 |
+
("nasty", 0.9), ("repugnant", 1.0), ("foul", 0.9), ("appalled", 0.9),
|
| 303 |
+
("sickened", 0.9), ("offended", 0.8), ("distaste", 0.9), ("aversion", 0.9),
|
| 304 |
+
("abhorrent", 1.0), ("odious", 1.0), ("repellent", 1.0), ("objectionable", 0.8),
|
| 305 |
+
("detestable", 1.0), ("loathsome", 1.0), ("vile", 1.0), ("horrid", 0.9)
|
| 306 |
+
],
|
| 307 |
+
"surprised": [
|
| 308 |
+
("surprised", 1.0), ("shocked", 0.9), ("astonished", 1.0), ("amazed", 0.9),
|
| 309 |
+
("startled", 0.9), ("stunned", 0.9), ("speechless", 0.8), ("unexpected", 0.8),
|
| 310 |
+
("wow", 0.8), ("whoa", 0.8), ("unbelievable", 0.8), ("incredible", 0.8),
|
| 311 |
+
("dumbfounded", 1.0), ("flabbergasted", 1.0), ("staggered", 0.9), ("aghast", 0.9),
|
| 312 |
+
("astounded", 1.0), ("taken aback", 0.9), ("disbelief", 0.8), ("bewildered", 0.8),
|
| 313 |
+
("thunderstruck", 1.0), ("wonder", 0.7), ("sudden", 0.6), ("jaw-dropping", 0.9)
|
| 314 |
+
],
|
| 315 |
+
"neutral": [
|
| 316 |
+
("okay", 0.7), ("fine", 0.7), ("alright", 0.7), ("normal", 0.8),
|
| 317 |
+
("calm", 0.8), ("steady", 0.8), ("balanced", 0.8), ("ordinary", 0.8),
|
| 318 |
+
("routine", 0.8), ("regular", 0.8), ("standard", 0.8), ("moderate", 0.8),
|
| 319 |
+
("usual", 0.8), ("typical", 0.8), ("average", 0.8), ("common", 0.8),
|
| 320 |
+
("so-so", 0.7), ("fair", 0.7), ("acceptable", 0.7), ("stable", 0.8),
|
| 321 |
+
("unchanged", 0.8), ("plain", 0.7), ("mild", 0.7), ("middle-of-the-road", 0.8)
|
| 322 |
+
],
|
| 323 |
+
"sarcastic": [
|
| 324 |
+
("yeah right", 1.0), ("sure thing", 0.9), ("oh great", 0.9), ("how wonderful", 0.9),
|
| 325 |
+
("wow", 0.7), ("really", 0.7), ("obviously", 0.8), ("definitely", 0.7),
|
| 326 |
+
("of course", 0.7), ("totally", 0.7), ("exactly", 0.7), ("perfect", 0.7),
|
| 327 |
+
("brilliant", 0.8), ("genius", 0.8), ("whatever", 0.8), ("right", 0.7),
|
| 328 |
+
("nice job", 0.8), ("good one", 0.8), ("bravo", 0.8), ("slow clap", 1.0),
|
| 329 |
+
("im shocked", 0.9), ("never would have guessed", 0.9), ("shocking", 0.7), ("unbelievable", 0.7)
|
| 330 |
+
]
|
| 331 |
+
}
|
| 332 |
+
|
| 333 |
+
# Sarcasm indicators
|
| 334 |
+
self.sarcasm_indicators = [
|
| 335 |
+
"yeah right", "sure thing", "oh great", "riiiight", "suuure",
|
| 336 |
+
"*slow clap*", "/s", "wow just wow", "you don't say", "no kidding",
|
| 337 |
+
"what a surprise", "shocker", "congratulations", "well done", "genius",
|
| 338 |
+
"oh wow", "oh really", "totally", "absolutely", "clearly", "obviously",
|
| 339 |
+
"genius idea", "brilliant plan", "fantastic job", "amazing work"
|
| 340 |
+
]
|
| 341 |
+
|
| 342 |
+
# Negation words
|
| 343 |
+
self.negations = [
|
| 344 |
+
"not", "no", "never", "none", "nothing", "neither", "nor", "nowhere",
|
| 345 |
+
"hardly", "scarcely", "barely", "doesn't", "isn't", "wasn't", "shouldn't",
|
| 346 |
+
"wouldn't", "couldn't", "won't", "can't", "don't", "didn't", "haven't"
|
| 347 |
+
]
|
| 348 |
+
|
| 349 |
+
# Intensifiers
|
| 350 |
+
self.intensifiers = [
|
| 351 |
+
"very", "really", "extremely", "absolutely", "completely", "totally",
|
| 352 |
+
"utterly", "quite", "particularly", "especially", "remarkably", "truly",
|
| 353 |
+
"so", "too", "such", "incredibly", "exceedingly", "extraordinarily"
|
| 354 |
+
]
|
| 355 |
+
|
| 356 |
+
# Compile patterns for more efficient matching
|
| 357 |
+
import re
|
| 358 |
+
self.emotion_patterns = {}
|
| 359 |
+
for emotion, keywords in self.emotion_keywords.items():
|
| 360 |
+
self.emotion_patterns[emotion] = [
|
| 361 |
+
(re.compile(r'\b' + re.escape(word) + r'\b', re.IGNORECASE), weight)
|
| 362 |
+
for word, weight in keywords
|
| 363 |
+
]
|
| 364 |
+
|
| 365 |
+
self.negation_pattern = re.compile(r'\b(' + '|'.join(re.escape(n) for n in self.negations) + r')\s+(\w+)', re.IGNORECASE)
|
| 366 |
+
self.intensifier_pattern = re.compile(r'\b(' + '|'.join(re.escape(i) for i in self.intensifiers) + r')\s+(\w+)', re.IGNORECASE)
|
| 367 |
+
|
| 368 |
+
def analyze(self, text):
|
| 369 |
+
"""
|
| 370 |
+
Analyze text for emotions using enhanced keyword matching
|
| 371 |
+
Returns numpy array of emotion probabilities
|
| 372 |
+
"""
|
| 373 |
+
# Initialize scores
|
| 374 |
+
emotion_scores = {emotion: 0.0 for emotion in EMOTIONS}
|
| 375 |
+
|
| 376 |
+
# Set base score for neutral
|
| 377 |
+
emotion_scores["neutral"] = 1.0
|
| 378 |
+
|
| 379 |
+
# Convert to lowercase for case-insensitive matching
|
| 380 |
+
text_lower = text.lower()
|
| 381 |
+
|
| 382 |
+
# Process each emotion
|
| 383 |
+
for emotion, patterns in self.emotion_patterns.items():
|
| 384 |
+
for pattern, weight in patterns:
|
| 385 |
+
matches = pattern.findall(text_lower)
|
| 386 |
+
if matches:
|
| 387 |
+
# Add score based on number of matches and their weights
|
| 388 |
+
emotion_scores[emotion] += len(matches) * weight
|
| 389 |
+
|
| 390 |
+
# Process negations - look for "not happy" patterns
|
| 391 |
+
negation_matches = self.negation_pattern.finditer(text_lower)
|
| 392 |
+
for match in negation_matches:
|
| 393 |
+
negation, word = match.groups()
|
| 394 |
+
# Check if the negated word is in any emotion keywords
|
| 395 |
+
for emotion, keywords in self.emotion_keywords.items():
|
| 396 |
+
if any(word == kw[0] for kw in keywords):
|
| 397 |
+
# Reduce score for this emotion and slightly increase opposite emotions
|
| 398 |
+
emotion_scores[emotion] -= 0.7
|
| 399 |
+
|
| 400 |
+
# Increase opposite emotions (e.g., if "not happy", increase "sad")
|
| 401 |
+
if emotion == "happy":
|
| 402 |
+
emotion_scores["sad"] += 0.3
|
| 403 |
+
elif emotion == "sad":
|
| 404 |
+
emotion_scores["happy"] += 0.3
|
| 405 |
+
|
| 406 |
+
# Process intensifiers - "very happy" should increase score
|
| 407 |
+
intensifier_matches = self.intensifier_pattern.finditer(text_lower)
|
| 408 |
+
for match in intensifier_matches:
|
| 409 |
+
intensifier, word = match.groups()
|
| 410 |
+
# Check if the intensified word is in any emotion keywords
|
| 411 |
+
for emotion, keywords in self.emotion_keywords.items():
|
| 412 |
+
if any(word == kw[0] for kw in keywords):
|
| 413 |
+
# Increase score for this emotion
|
| 414 |
+
emotion_scores[emotion] += 0.5
|
| 415 |
+
|
| 416 |
+
# Ensure no negative scores
|
| 417 |
+
for emotion in emotion_scores:
|
| 418 |
+
emotion_scores[emotion] = max(0, emotion_scores[emotion])
|
| 419 |
+
|
| 420 |
+
# Normalize to probabilities
|
| 421 |
+
total = sum(emotion_scores.values())
|
| 422 |
+
if total > 0:
|
| 423 |
+
probs = {emotion: score/total for emotion, score in emotion_scores.items()}
|
| 424 |
+
else:
|
| 425 |
+
# If no emotions detected, default to neutral
|
| 426 |
+
probs = {emotion: 0.0 for emotion in EMOTIONS}
|
| 427 |
+
probs["neutral"] = 1.0
|
| 428 |
+
|
| 429 |
+
# Convert to numpy array in the same order as EMOTIONS
|
| 430 |
+
return np.array([probs[emotion] for emotion in EMOTIONS])
|
| 431 |
+
|
| 432 |
+
def detect_sarcasm(self, text):
|
| 433 |
+
"""
|
| 434 |
+
Detect sarcasm in text
|
| 435 |
+
Returns [negative, neutral, positive] probability array where high "positive"
|
| 436 |
+
with negative context indicates sarcasm
|
| 437 |
+
"""
|
| 438 |
+
text_lower = text.lower()
|
| 439 |
+
sarcasm_score = 0.0
|
| 440 |
+
|
| 441 |
+
# Check for direct sarcasm indicators
|
| 442 |
+
for indicator in self.sarcasm_indicators:
|
| 443 |
+
if indicator in text_lower:
|
| 444 |
+
sarcasm_score += 0.3
|
| 445 |
+
|
| 446 |
+
# Check for common sarcasm patterns
|
| 447 |
+
positive_words = [kw[0] for kw in self.emotion_keywords["happy"]]
|
| 448 |
+
has_positive = any(word in text_lower for word in positive_words)
|
| 449 |
+
|
| 450 |
+
negative_context = any(neg in text_lower for neg in ["terrible", "awful", "horrible", "fail", "disaster", "mess"])
|
| 451 |
+
|
| 452 |
+
# Positive words in negative context suggests sarcasm
|
| 453 |
+
if has_positive and negative_context:
|
| 454 |
+
sarcasm_score += 0.4
|
| 455 |
+
|
| 456 |
+
# Check for excessive punctuation which might indicate sarcasm
|
| 457 |
+
if "!!!" in text or "?!" in text:
|
| 458 |
+
sarcasm_score += 0.2
|
| 459 |
+
|
| 460 |
+
# Cap the score
|
| 461 |
+
sarcasm_score = min(1.0, sarcasm_score)
|
| 462 |
+
|
| 463 |
+
# If sarcasm detected, return sentiment array biased toward sarcasm
|
| 464 |
+
# [negative, neutral, positive] - high positive with negative context indicates sarcasm
|
| 465 |
+
if sarcasm_score > 0.3:
|
| 466 |
+
return np.array([0.1, 0.1, 0.8]) # High positive signal for sarcasm detection
|
| 467 |
+
else:
|
| 468 |
+
# Return balanced array (no strong indication of sarcasm)
|
| 469 |
+
return np.array([0.33, 0.34, 0.33])
|
| 470 |
+
|
| 471 |
+
def get_keyword_strength(self, text):
|
| 472 |
+
"""
|
| 473 |
+
Measure the strength of emotional keywords in the text
|
| 474 |
+
Returns a value between 0 and 10
|
| 475 |
+
"""
|
| 476 |
+
text_lower = text.lower()
|
| 477 |
+
total_matches = 0
|
| 478 |
+
weighted_matches = 0
|
| 479 |
+
|
| 480 |
+
# Count all matches across all emotions with their weights
|
| 481 |
+
for emotion, patterns in self.emotion_patterns.items():
|
| 482 |
+
for pattern, weight in patterns:
|
| 483 |
+
matches = pattern.findall(text_lower)
|
| 484 |
+
total_matches += len(matches)
|
| 485 |
+
weighted_matches += len(matches) * weight
|
| 486 |
+
|
| 487 |
+
# Calculate strength score on a scale of 0-10
|
| 488 |
+
if total_matches > 0:
|
| 489 |
+
avg_weight = weighted_matches / total_matches
|
| 490 |
+
# Scale based on number of matches and their average weight
|
| 491 |
+
strength = min(10, (total_matches * avg_weight) / 2)
|
| 492 |
+
return strength
|
| 493 |
+
else:
|
| 494 |
+
return 0.0
|
| 495 |
+
|
| 496 |
+
# Part 7: Acoustic Feature Extraction with Fallback
|
| 497 |
+
class AcousticFeatureExtractor:
|
| 498 |
+
def __init__(self):
|
| 499 |
+
self.use_opensmile = True
|
| 500 |
+
try:
|
| 501 |
+
import opensmile
|
| 502 |
+
# Initialize OpenSMILE with the eGeMAPS feature set instead of ComParE_2016
|
| 503 |
+
# eGeMAPS is specifically designed for voice analysis and emotion recognition
|
| 504 |
+
self.smile = opensmile.Smile(
|
| 505 |
+
feature_set=opensmile.FeatureSet.eGeMAPSv02,
|
| 506 |
+
feature_level=opensmile.FeatureLevel.Functionals,
|
| 507 |
+
)
|
| 508 |
+
print("OpenSMILE feature extractor initialized successfully with eGeMAPS")
|
| 509 |
+
except Exception as e:
|
| 510 |
+
print(f"Failed to initialize OpenSMILE: {e}")
|
| 511 |
+
print("Using librosa for feature extraction instead.")
|
| 512 |
+
self.use_opensmile = False
|
| 513 |
+
|
| 514 |
+
def extract_features(self, audio_path):
|
| 515 |
+
try:
|
| 516 |
+
if self.use_opensmile:
|
| 517 |
+
# Use OpenSMILE for feature extraction
|
| 518 |
+
features = self.smile.process_file(audio_path)
|
| 519 |
+
return features.values
|
| 520 |
+
else:
|
| 521 |
+
# Fallback to improved librosa feature extraction
|
| 522 |
+
return self._extract_librosa_features(audio_path)
|
| 523 |
+
except Exception as e:
|
| 524 |
+
print(f"Error in acoustic feature extraction: {e}")
|
| 525 |
+
print("Using dummy features as fallback")
|
| 526 |
+
# Return dummy features in case of error
|
| 527 |
+
return np.zeros(88) # eGeMAPS dimension
|
| 528 |
+
|
| 529 |
+
def _extract_librosa_features(self, audio_path):
|
| 530 |
+
"""Improved librosa feature extraction focusing on emotion-relevant features"""
|
| 531 |
+
try:
|
| 532 |
+
# Load audio
|
| 533 |
+
y, sr = librosa.load(audio_path, sr=22050)
|
| 534 |
+
|
| 535 |
+
# Extract features specifically relevant to emotion detection
|
| 536 |
+
|
| 537 |
+
# 1. Pitch features (fundamental frequency)
|
| 538 |
+
pitches, magnitudes = librosa.piptrack(y=y, sr=sr)
|
| 539 |
+
pitch_mean = np.mean(pitches[magnitudes > np.median(magnitudes)])
|
| 540 |
+
pitch_std = np.std(pitches[magnitudes > np.median(magnitudes)])
|
| 541 |
+
|
| 542 |
+
# 2. Energy/intensity features
|
| 543 |
+
rms = librosa.feature.rms(y=y)[0]
|
| 544 |
+
energy_mean = np.mean(rms)
|
| 545 |
+
energy_std = np.std(rms)
|
| 546 |
+
|
| 547 |
+
# 3. Tempo and rhythm features
|
| 548 |
+
tempo, _ = librosa.beat.beat_track(y=y, sr=sr)
|
| 549 |
+
|
| 550 |
+
# 4. Spectral features
|
| 551 |
+
spectral_centroid = librosa.feature.spectral_centroid(y=y, sr=sr)[0]
|
| 552 |
+
spectral_bandwidth = librosa.feature.spectral_bandwidth(y=y, sr=sr)[0]
|
| 553 |
+
spectral_rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)[0]
|
| 554 |
+
|
| 555 |
+
# 5. Voice quality features
|
| 556 |
+
zero_crossing_rate = librosa.feature.zero_crossing_rate(y)[0]
|
| 557 |
+
|
| 558 |
+
# Compute statistics for each feature
|
| 559 |
+
features = []
|
| 560 |
+
for feature in [spectral_centroid, spectral_bandwidth, spectral_rolloff, zero_crossing_rate]:
|
| 561 |
+
features.extend([np.mean(feature), np.std(feature), np.min(feature), np.max(feature)])
|
| 562 |
+
|
| 563 |
+
# Add pitch and energy features
|
| 564 |
+
features.extend([pitch_mean, pitch_std, energy_mean, energy_std, tempo])
|
| 565 |
+
|
| 566 |
+
# Add MFCCs (critical for speech emotion)
|
| 567 |
+
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
|
| 568 |
+
for mfcc in mfccs:
|
| 569 |
+
features.extend([np.mean(mfcc), np.std(mfcc)])
|
| 570 |
+
|
| 571 |
+
# Convert to numpy array
|
| 572 |
+
features = np.array(features)
|
| 573 |
+
|
| 574 |
+
# Handle NaN values
|
| 575 |
+
features = np.nan_to_num(features)
|
| 576 |
+
|
| 577 |
+
# Pad or truncate to match eGeMAPS dimension (88)
|
| 578 |
+
if len(features) < 88:
|
| 579 |
+
features = np.pad(features, (0, 88 - len(features)))
|
| 580 |
+
else:
|
| 581 |
+
features = features[:88]
|
| 582 |
+
|
| 583 |
+
return features
|
| 584 |
+
|
| 585 |
+
except Exception as e:
|
| 586 |
+
print(f"Error in librosa feature extraction: {e}")
|
| 587 |
+
return np.zeros(88) # Same dimension as eGeMAPS
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
# Part 8: Acoustic Emotion Classifier
|
| 591 |
+
class AcousticEmotionClassifier(nn.Module):
|
| 592 |
+
def __init__(self, input_dim, hidden_dim=128, num_classes=len(EMOTIONS)):
|
| 593 |
+
super().__init__()
|
| 594 |
+
|
| 595 |
+
# Normalize input features
|
| 596 |
+
self.batch_norm = nn.BatchNorm1d(input_dim)
|
| 597 |
+
|
| 598 |
+
# Feature extraction layers
|
| 599 |
+
self.feature_extractor = nn.Sequential(
|
| 600 |
+
nn.Linear(input_dim, hidden_dim * 2),
|
| 601 |
+
nn.ReLU(),
|
| 602 |
+
nn.Dropout(0.3),
|
| 603 |
+
nn.Linear(hidden_dim * 2, hidden_dim),
|
| 604 |
+
nn.ReLU(),
|
| 605 |
+
nn.Dropout(0.3)
|
| 606 |
+
)
|
| 607 |
+
|
| 608 |
+
# Emotion classification head
|
| 609 |
+
self.classifier = nn.Sequential(
|
| 610 |
+
nn.Linear(hidden_dim, hidden_dim // 2),
|
| 611 |
+
nn.ReLU(),
|
| 612 |
+
nn.Dropout(0.2),
|
| 613 |
+
nn.Linear(hidden_dim // 2, num_classes)
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
# Initialize weights properly
|
| 617 |
+
self._init_weights()
|
| 618 |
+
|
| 619 |
+
def _init_weights(self):
|
| 620 |
+
"""Initialize weights with Xavier initialization"""
|
| 621 |
+
for m in self.modules():
|
| 622 |
+
if isinstance(m, nn.Linear):
|
| 623 |
+
nn.init.xavier_uniform_(m.weight)
|
| 624 |
+
if m.bias is not None:
|
| 625 |
+
nn.init.zeros_(m.bias)
|
| 626 |
+
|
| 627 |
+
def forward(self, x):
|
| 628 |
+
# Handle different input shapes
|
| 629 |
+
if len(x.shape) == 1:
|
| 630 |
+
x = x.unsqueeze(0) # Add batch dimension
|
| 631 |
+
|
| 632 |
+
# Normalize features
|
| 633 |
+
x = self.batch_norm(x)
|
| 634 |
+
|
| 635 |
+
# Extract features
|
| 636 |
+
features = self.feature_extractor(x)
|
| 637 |
+
|
| 638 |
+
# Classify emotions
|
| 639 |
+
output = self.classifier(features)
|
| 640 |
+
|
| 641 |
+
return output
|
| 642 |
+
|
| 643 |
+
|
| 644 |
+
class PretrainedAudioClassifier:
|
| 645 |
+
"""A rule-based classifier for audio emotion detection until proper training"""
|
| 646 |
+
|
| 647 |
+
def __init__(self):
|
| 648 |
+
# Define acoustic feature thresholds for emotions based on research
|
| 649 |
+
# These are simplified heuristics based on acoustic phonetics research
|
| 650 |
+
self.feature_thresholds = {
|
| 651 |
+
"happy": {
|
| 652 |
+
"pitch_mean": (220, 400), # Higher pitch for happiness
|
| 653 |
+
"energy_mean": (0.6, 1.0), # Higher energy
|
| 654 |
+
"speech_rate": (0.8, 1.0) # Faster speech rate
|
| 655 |
+
},
|
| 656 |
+
"sad": {
|
| 657 |
+
"pitch_mean": (100, 220), # Lower pitch for sadness
|
| 658 |
+
"energy_mean": (0.1, 0.5), # Lower energy
|
| 659 |
+
"speech_rate": (0.3, 0.7) # Slower speech rate
|
| 660 |
+
},
|
| 661 |
+
"angry": {
|
| 662 |
+
"pitch_mean": (250, 400), # Higher pitch for anger
|
| 663 |
+
"energy_mean": (0.7, 1.0), # Higher energy
|
| 664 |
+
"speech_rate": (0.7, 1.0) # Faster speech rate
|
| 665 |
+
},
|
| 666 |
+
"fearful": {
|
| 667 |
+
"pitch_mean": (200, 350), # Higher pitch
|
| 668 |
+
"energy_mean": (0.4, 0.8), # Medium energy
|
| 669 |
+
"speech_rate": (0.6, 0.9) # Medium-fast speech rate
|
| 670 |
+
},
|
| 671 |
+
"neutral": {
|
| 672 |
+
"pitch_mean": (180, 240), # Medium pitch
|
| 673 |
+
"energy_mean": (0.3, 0.6), # Medium energy
|
| 674 |
+
"speech_rate": (0.4, 0.7) # Medium speech rate
|
| 675 |
+
}
|
| 676 |
+
}
|
| 677 |
+
|
| 678 |
+
def extract_key_features(self, audio_path):
|
| 679 |
+
"""Extract key acoustic features for rule-based classification"""
|
| 680 |
+
try:
|
| 681 |
+
y, sr = librosa.load(audio_path, sr=22050)
|
| 682 |
+
|
| 683 |
+
# Extract pitch
|
| 684 |
+
pitches, magnitudes = librosa.piptrack(y=y, sr=sr)
|
| 685 |
+
pitch_mean = np.mean(pitches[magnitudes > 0.1]) if np.any(magnitudes > 0.1) else 200
|
| 686 |
+
|
| 687 |
+
# Normalize pitch to 0-1 range (assuming human pitch range 80-400 Hz)
|
| 688 |
+
pitch_mean_norm = (pitch_mean - 80) / (400 - 80)
|
| 689 |
+
pitch_mean_norm = max(0, min(1, pitch_mean_norm))
|
| 690 |
+
|
| 691 |
+
# Extract energy
|
| 692 |
+
rms = librosa.feature.rms(y=y)[0]
|
| 693 |
+
energy_mean = np.mean(rms)
|
| 694 |
+
|
| 695 |
+
# Normalize energy
|
| 696 |
+
energy_mean_norm = energy_mean / 0.1 # Assuming 0.1 is a reasonable max RMS
|
| 697 |
+
energy_mean_norm = max(0, min(1, energy_mean_norm))
|
| 698 |
+
|
| 699 |
+
# Estimate speech rate from onsets
|
| 700 |
+
onset_env = librosa.onset.onset_strength(y=y, sr=sr)
|
| 701 |
+
onsets = librosa.onset.onset_detect(onset_envelope=onset_env, sr=sr)
|
| 702 |
+
if len(onsets) > 1:
|
| 703 |
+
speech_rate = len(onsets) / (len(y) / sr) # Onsets per second
|
| 704 |
+
speech_rate_norm = min(1.0, speech_rate / 5.0) # Normalize, assuming 5 onsets/sec is fast
|
| 705 |
+
else:
|
| 706 |
+
speech_rate_norm = 0.5 # Default to medium if can't detect
|
| 707 |
+
|
| 708 |
+
return {
|
| 709 |
+
"pitch_mean": pitch_mean_norm,
|
| 710 |
+
"energy_mean": energy_mean_norm,
|
| 711 |
+
"speech_rate": speech_rate_norm
|
| 712 |
+
}
|
| 713 |
+
|
| 714 |
+
except Exception as e:
|
| 715 |
+
print(f"Error extracting key features: {e}")
|
| 716 |
+
return {
|
| 717 |
+
"pitch_mean": 0.5, # Default to medium values
|
| 718 |
+
"energy_mean": 0.5,
|
| 719 |
+
"speech_rate": 0.5
|
| 720 |
+
}
|
| 721 |
+
|
| 722 |
+
def predict(self, audio_path):
|
| 723 |
+
"""Predict emotion based on acoustic features"""
|
| 724 |
+
# Extract key features
|
| 725 |
+
features = self.extract_key_features(audio_path)
|
| 726 |
+
|
| 727 |
+
# Calculate match scores for each emotion
|
| 728 |
+
emotion_scores = {}
|
| 729 |
+
for emotion, thresholds in self.feature_thresholds.items():
|
| 730 |
+
score = 0
|
| 731 |
+
for feature, (min_val, max_val) in thresholds.items():
|
| 732 |
+
# Normalize threshold to 0-1 range
|
| 733 |
+
min_norm = (min_val - 80) / (400 - 80) if feature == "pitch_mean" else min_val
|
| 734 |
+
max_norm = (max_val - 80) / (400 - 80) if feature == "pitch_mean" else max_val
|
| 735 |
+
|
| 736 |
+
# Check if feature is in the emotion's range
|
| 737 |
+
if min_norm <= features[feature] <= max_norm:
|
| 738 |
+
# Higher score if closer to the middle of the range
|
| 739 |
+
middle = (min_norm + max_norm) / 2
|
| 740 |
+
distance = abs(features[feature] - middle) / ((max_norm - min_norm) / 2)
|
| 741 |
+
feature_score = 1 - distance
|
| 742 |
+
score += feature_score
|
| 743 |
+
else:
|
| 744 |
+
# Penalty for being outside the range
|
| 745 |
+
score -= 0.5
|
| 746 |
+
|
| 747 |
+
emotion_scores[emotion] = max(0, score)
|
| 748 |
+
|
| 749 |
+
# Add small values for other emotions not in our basic set
|
| 750 |
+
for emotion in EMOTIONS:
|
| 751 |
+
if emotion not in emotion_scores:
|
| 752 |
+
emotion_scores[emotion] = 0.1
|
| 753 |
+
|
| 754 |
+
# Normalize scores to probabilities
|
| 755 |
+
total = sum(emotion_scores.values())
|
| 756 |
+
if total > 0:
|
| 757 |
+
probs = {emotion: score/total for emotion, score in emotion_scores.items()}
|
| 758 |
+
else:
|
| 759 |
+
# Default to neutral if all scores are 0
|
| 760 |
+
probs = {emotion: 0.1 for emotion in EMOTIONS}
|
| 761 |
+
probs["neutral"] = 0.5
|
| 762 |
+
|
| 763 |
+
# Convert to array in the same order as EMOTIONS
|
| 764 |
+
return np.array([probs[emotion] for emotion in EMOTIONS])
|
| 765 |
+
|
| 766 |
+
|
| 767 |
+
|
| 768 |
+
|
| 769 |
+
# Part 9: Improved Fusion Model for combining text and acoustic predictions
|
| 770 |
+
class AdaptiveModalityFusionModel(nn.Module):
|
| 771 |
+
def __init__(self, text_dim, acoustic_dim, hidden_dim=128, num_classes=len(EMOTIONS)):
|
| 772 |
+
super().__init__()
|
| 773 |
+
|
| 774 |
+
# Confidence estimators for each modality
|
| 775 |
+
self.text_confidence = nn.Sequential(
|
| 776 |
+
nn.Linear(text_dim, hidden_dim),
|
| 777 |
+
nn.ReLU(),
|
| 778 |
+
nn.Linear(hidden_dim, 1),
|
| 779 |
+
nn.Sigmoid()
|
| 780 |
+
)
|
| 781 |
+
|
| 782 |
+
self.acoustic_confidence = nn.Sequential(
|
| 783 |
+
nn.Linear(acoustic_dim, hidden_dim),
|
| 784 |
+
nn.ReLU(),
|
| 785 |
+
nn.Linear(hidden_dim, 1),
|
| 786 |
+
nn.Sigmoid()
|
| 787 |
+
)
|
| 788 |
+
|
| 789 |
+
# Feature transformation
|
| 790 |
+
self.text_transform = nn.Linear(text_dim, hidden_dim)
|
| 791 |
+
self.acoustic_transform = nn.Linear(acoustic_dim, hidden_dim)
|
| 792 |
+
|
| 793 |
+
# Final classifier
|
| 794 |
+
self.classifier = nn.Sequential(
|
| 795 |
+
nn.Linear(hidden_dim, num_classes),
|
| 796 |
+
nn.Softmax(dim=1)
|
| 797 |
+
)
|
| 798 |
+
|
| 799 |
+
# Initialize weights
|
| 800 |
+
self._init_weights()
|
| 801 |
+
|
| 802 |
+
def _init_weights(self):
|
| 803 |
+
for m in self.modules():
|
| 804 |
+
if isinstance(m, nn.Linear):
|
| 805 |
+
nn.init.xavier_uniform_(m.weight)
|
| 806 |
+
if m.bias is not None:
|
| 807 |
+
nn.init.zeros_(m.bias)
|
| 808 |
+
|
| 809 |
+
def forward(self, text_features, acoustic_features):
|
| 810 |
+
# Estimate confidence for each modality
|
| 811 |
+
text_conf = self.text_confidence(text_features)
|
| 812 |
+
acoustic_conf = self.acoustic_confidence(acoustic_features)
|
| 813 |
+
|
| 814 |
+
# Normalize confidences to sum to 1
|
| 815 |
+
total_conf = text_conf + acoustic_conf
|
| 816 |
+
text_weight = text_conf / total_conf
|
| 817 |
+
acoustic_weight = acoustic_conf / total_conf
|
| 818 |
+
|
| 819 |
+
# Transform features
|
| 820 |
+
text_transformed = self.text_transform(text_features)
|
| 821 |
+
acoustic_transformed = self.acoustic_transform(acoustic_features)
|
| 822 |
+
|
| 823 |
+
# Weighted combination
|
| 824 |
+
combined = text_weight * text_transformed + acoustic_weight * acoustic_transformed
|
| 825 |
+
|
| 826 |
+
# Classification
|
| 827 |
+
output = self.classifier(combined)
|
| 828 |
+
|
| 829 |
+
return output
|
| 830 |
+
|
| 831 |
+
|
| 832 |
+
# Part 10: Simple Rule-based Fallback Classifier
|
| 833 |
+
class RuleBasedClassifier:
|
| 834 |
+
"""A simple rule-based classifier for fallback when models fail"""
|
| 835 |
+
|
| 836 |
+
def predict(self, text):
|
| 837 |
+
"""Predict emotion based on simple word matching"""
|
| 838 |
+
text = text.lower()
|
| 839 |
+
|
| 840 |
+
# Simple emotion keywords
|
| 841 |
+
emotion_keywords = {
|
| 842 |
+
"happy": ["happy", "joy", "delight", "excited", "glad", "pleased", "cheerful", "smile"],
|
| 843 |
+
"sad": ["sad", "unhappy", "depressed", "sorrow", "grief", "tearful", "miserable"],
|
| 844 |
+
"angry": ["angry", "mad", "furious", "annoyed", "irritated", "enraged", "livid"],
|
| 845 |
+
"fearful": ["afraid", "scared", "frightened", "fear", "terror", "panic", "horrified"],
|
| 846 |
+
"disgust": ["disgust", "gross", "repulsed", "revolted", "sick", "nauseous"],
|
| 847 |
+
"surprised": ["surprised", "shocked", "astonished", "amazed", "startled"],
|
| 848 |
+
"sarcastic": ["yeah right", "sure thing", "oh great", "wow", "really", "obviously"]
|
| 849 |
+
}
|
| 850 |
+
|
| 851 |
+
# Count matches for each emotion
|
| 852 |
+
emotion_scores = {emotion: 0 for emotion in EMOTIONS}
|
| 853 |
+
emotion_scores["neutral"] = 1 # Default to neutral
|
| 854 |
+
|
| 855 |
+
for emotion, keywords in emotion_keywords.items():
|
| 856 |
+
for keyword in keywords:
|
| 857 |
+
if keyword in text:
|
| 858 |
+
emotion_scores[emotion] += 1
|
| 859 |
+
|
| 860 |
+
# Return the emotion with highest score
|
| 861 |
+
max_emotion = max(emotion_scores, key=emotion_scores.get)
|
| 862 |
+
|
| 863 |
+
# Convert to probabilities
|
| 864 |
+
total = sum(emotion_scores.values())
|
| 865 |
+
probs = {emotion: score/total for emotion, score in emotion_scores.items()}
|
| 866 |
+
|
| 867 |
+
return max_emotion, probs
|
| 868 |
+
|
| 869 |
+
# Part 11: Complete Emotion Recognition Pipeline with Comprehensive Error Handling
|
| 870 |
+
class EmotionRecognitionPipeline:
|
| 871 |
+
def __init__(self, acoustic_model_path=None, fusion_model_path=None):
|
| 872 |
+
try:
|
| 873 |
+
print("Initializing Improved Emotion Recognition Pipeline...")
|
| 874 |
+
|
| 875 |
+
# Initialize transcriber
|
| 876 |
+
self.transcriber = WhisperTranscriber()
|
| 877 |
+
|
| 878 |
+
# Initialize text classifier
|
| 879 |
+
self.text_classifier = TextEmotionClassifier()
|
| 880 |
+
|
| 881 |
+
# Initialize feature extractor with improved features
|
| 882 |
+
self.feature_extractor = AcousticFeatureExtractor()
|
| 883 |
+
|
| 884 |
+
# Initialize rule-based audio classifier as fallback
|
| 885 |
+
self.rule_based_audio = PretrainedAudioClassifier()
|
| 886 |
+
|
| 887 |
+
# Initialize simple rule-based fallback
|
| 888 |
+
self.rule_based = RuleBasedClassifier()
|
| 889 |
+
|
| 890 |
+
# Define simple fusion strategy
|
| 891 |
+
self.use_adaptive_fusion = False
|
| 892 |
+
|
| 893 |
+
print("Improved Emotion Recognition Pipeline initialized successfully")
|
| 894 |
+
except Exception as e:
|
| 895 |
+
print(f"Error initializing pipeline: {e}")
|
| 896 |
+
print("Some functionality may be limited")
|
| 897 |
+
|
| 898 |
+
def predict(self, audio_path):
|
| 899 |
+
results = {
|
| 900 |
+
"transcription": "",
|
| 901 |
+
"text_emotions": {emotion: 0.0 for emotion in EMOTIONS},
|
| 902 |
+
"acoustic_emotions": {emotion: 0.0 for emotion in EMOTIONS},
|
| 903 |
+
"final_emotions": {emotion: 0.0 for emotion in EMOTIONS},
|
| 904 |
+
"predicted_emotion": "neutral",
|
| 905 |
+
"is_sarcastic": False,
|
| 906 |
+
"errors": []
|
| 907 |
+
}
|
| 908 |
+
|
| 909 |
+
# Step 1: Transcribe audio
|
| 910 |
+
try:
|
| 911 |
+
transcription = self.transcriber.transcribe(audio_path)
|
| 912 |
+
results["transcription"] = transcription
|
| 913 |
+
print(f"Transcription: {transcription}")
|
| 914 |
+
except Exception as e:
|
| 915 |
+
error_msg = f"Failed to transcribe audio: {e}"
|
| 916 |
+
print(error_msg)
|
| 917 |
+
results["errors"].append(error_msg)
|
| 918 |
+
results["transcription"] = "Error: Could not transcribe audio"
|
| 919 |
+
|
| 920 |
+
# Step 2: Analyze text emotions
|
| 921 |
+
try:
|
| 922 |
+
if results["transcription"].startswith("Error:"):
|
| 923 |
+
# Skip text analysis if transcription failed
|
| 924 |
+
text_emotions = np.ones(len(EMOTIONS)) / len(EMOTIONS) # Equal probabilities
|
| 925 |
+
sarcasm_indicators = np.array([0.33, 0.33, 0.33])
|
| 926 |
+
|
| 927 |
+
# Try rule-based as fallback
|
| 928 |
+
rule_emotion, rule_probs = self.rule_based.predict(results["transcription"])
|
| 929 |
+
results["text_emotions"] = rule_probs
|
| 930 |
+
else:
|
| 931 |
+
text_emotions = self.text_classifier.predict_emotion(results["transcription"])
|
| 932 |
+
sarcasm_indicators = self.text_classifier.detect_sarcasm(results["transcription"])
|
| 933 |
+
|
| 934 |
+
# Format text emotions result
|
| 935 |
+
results["text_emotions"] = {EMOTIONS[i]: float(text_emotions[i])
|
| 936 |
+
for i in range(min(len(text_emotions), len(EMOTIONS)))}
|
| 937 |
+
|
| 938 |
+
print(f"Text-based emotions: {results['text_emotions']}")
|
| 939 |
+
except Exception as e:
|
| 940 |
+
error_msg = f"Failed to analyze text emotions: {e}"
|
| 941 |
+
print(error_msg)
|
| 942 |
+
results["errors"].append(error_msg)
|
| 943 |
+
|
| 944 |
+
# Use equal probabilities as fallback
|
| 945 |
+
results["text_emotions"] = {emotion: 1.0/len(EMOTIONS) for emotion in EMOTIONS}
|
| 946 |
+
|
| 947 |
+
# Step 3: Use rule-based audio classifier instead of the untrained model
|
| 948 |
+
try:
|
| 949 |
+
# Get predictions from rule-based classifier
|
| 950 |
+
audio_probs = self.rule_based_audio.predict(audio_path)
|
| 951 |
+
|
| 952 |
+
# Format acoustic emotions result
|
| 953 |
+
results["acoustic_emotions"] = {EMOTIONS[i]: float(audio_probs[i])
|
| 954 |
+
for i in range(min(len(audio_probs), len(EMOTIONS)))}
|
| 955 |
+
|
| 956 |
+
print(f"Acoustic-based emotions: {results['acoustic_emotions']}")
|
| 957 |
+
except Exception as e:
|
| 958 |
+
error_msg = f"Failed to predict acoustic emotions: {e}"
|
| 959 |
+
print(error_msg)
|
| 960 |
+
results["errors"].append(error_msg)
|
| 961 |
+
|
| 962 |
+
# Use equal probabilities as fallback
|
| 963 |
+
results["acoustic_emotions"] = {emotion: 1.0/len(EMOTIONS) for emotion in EMOTIONS}
|
| 964 |
+
audio_probs = np.ones(len(EMOTIONS)) / len(EMOTIONS)
|
| 965 |
+
|
| 966 |
+
# Step 4: Improved fusion strategy - text-biased weighted average
|
| 967 |
+
try:
|
| 968 |
+
# Convert dictionaries to arrays
|
| 969 |
+
text_array = np.array(list(results["text_emotions"].values()))
|
| 970 |
+
audio_array = np.array(list(results["acoustic_emotions"].values()))
|
| 971 |
+
|
| 972 |
+
# Calculate confidence scores
|
| 973 |
+
text_confidence = 1.0 - np.std(text_array) # Higher confidence if distribution is more certain
|
| 974 |
+
audio_confidence = 1.0 - np.std(audio_array)
|
| 975 |
+
|
| 976 |
+
# Bias toward text model since it's working better
|
| 977 |
+
text_confidence *= 1.5 # Increase text confidence
|
| 978 |
+
|
| 979 |
+
# Normalize confidences
|
| 980 |
+
total_confidence = text_confidence + audio_confidence
|
| 981 |
+
text_weight = text_confidence / total_confidence
|
| 982 |
+
audio_weight = audio_confidence / total_confidence
|
| 983 |
+
|
| 984 |
+
# Weighted average
|
| 985 |
+
final_probs = (text_weight * text_array) + (audio_weight * audio_array)
|
| 986 |
+
|
| 987 |
+
# Format final emotions
|
| 988 |
+
results["final_emotions"] = {EMOTIONS[i]: float(final_probs[i])
|
| 989 |
+
for i in range(len(EMOTIONS))}
|
| 990 |
+
|
| 991 |
+
print(f"Fusion weights: Text={text_weight:.2f}, Audio={audio_weight:.2f}")
|
| 992 |
+
except Exception as e:
|
| 993 |
+
error_msg = f"Failed to fuse predictions: {e}"
|
| 994 |
+
print(error_msg)
|
| 995 |
+
results["errors"].append(error_msg)
|
| 996 |
+
|
| 997 |
+
# Fallback to text-only predictions since they're more reliable
|
| 998 |
+
results["final_emotions"] = results["text_emotions"]
|
| 999 |
+
|
| 1000 |
+
# Get predicted emotion
|
| 1001 |
+
try:
|
| 1002 |
+
emotion_values = list(results["final_emotions"].values())
|
| 1003 |
+
emotion_idx = np.argmax(emotion_values)
|
| 1004 |
+
predicted_emotion = EMOTIONS[emotion_idx]
|
| 1005 |
+
results["predicted_emotion"] = predicted_emotion
|
| 1006 |
+
|
| 1007 |
+
# Check for sarcasm
|
| 1008 |
+
is_sarcastic = False
|
| 1009 |
+
if hasattr(sarcasm_indicators, "__len__") and len(sarcasm_indicators) > 0:
|
| 1010 |
+
if predicted_emotion in ["happy", "neutral"] and np.argmax(sarcasm_indicators) == 0:
|
| 1011 |
+
is_sarcastic = True
|
| 1012 |
+
results["predicted_emotion"] = "sarcastic"
|
| 1013 |
+
|
| 1014 |
+
results["is_sarcastic"] = is_sarcastic
|
| 1015 |
+
except Exception as e:
|
| 1016 |
+
error_msg = f"Failed to determine final emotion: {e}"
|
| 1017 |
+
print(error_msg)
|
| 1018 |
+
results["errors"].append(error_msg)
|
| 1019 |
+
results["predicted_emotion"] = "neutral" # Default fallback
|
| 1020 |
+
|
| 1021 |
+
return results
|
| 1022 |
+
|
| 1023 |
+
|
| 1024 |
+
# Part 12: Example on sample audio (with better error handling)
|
| 1025 |
+
def demo_on_sample_audio(pipeline, audio_path):
|
| 1026 |
+
if not os.path.exists(audio_path):
|
| 1027 |
+
print(f"Error: Audio file not found at {audio_path}")
|
| 1028 |
+
return
|
| 1029 |
+
|
| 1030 |
+
print(f"Analyzing audio file: {audio_path}")
|
| 1031 |
+
|
| 1032 |
+
try:
|
| 1033 |
+
# Predict emotion from audio
|
| 1034 |
+
result = pipeline.predict(audio_path)
|
| 1035 |
+
|
| 1036 |
+
# Print results
|
| 1037 |
+
print("\n===== EMOTION ANALYSIS RESULTS =====")
|
| 1038 |
+
print(f"Transcription: {result['transcription']}")
|
| 1039 |
+
print(f"\nPredicted Emotion: {result['predicted_emotion'].upper()}")
|
| 1040 |
+
print(f"Is Sarcastic: {'Yes' if result['is_sarcastic'] else 'No'}")
|
| 1041 |
+
|
| 1042 |
+
print("\nText-based Emotions:")
|
| 1043 |
+
for emotion, score in result['text_emotions'].items():
|
| 1044 |
+
print(f" {emotion}: {score:.4f}")
|
| 1045 |
+
|
| 1046 |
+
print("\nAcoustic-based Emotions:")
|
| 1047 |
+
for emotion, score in result['acoustic_emotions'].items():
|
| 1048 |
+
print(f" {emotion}: {score:.4f}")
|
| 1049 |
+
|
| 1050 |
+
print("\nFinal Fusion Emotions:")
|
| 1051 |
+
for emotion, score in result['final_emotions'].items():
|
| 1052 |
+
print(f" {emotion}: {score:.4f}")
|
| 1053 |
+
|
| 1054 |
+
if 'errors' in result and result['errors']:
|
| 1055 |
+
print("\nErrors encountered:")
|
| 1056 |
+
for error in result['errors']:
|
| 1057 |
+
print(f" - {error}")
|
| 1058 |
+
|
| 1059 |
+
# Plot results for visualization
|
| 1060 |
+
try:
|
| 1061 |
+
emotions = list(result['text_emotions'].keys())
|
| 1062 |
+
text_scores = list(result['text_emotions'].values())
|
| 1063 |
+
acoustic_scores = list(result['acoustic_emotions'].values())
|
| 1064 |
+
final_scores = list(result['final_emotions'].values())
|
| 1065 |
+
|
| 1066 |
+
plt.figure(figsize=(12, 6))
|
| 1067 |
+
|
| 1068 |
+
x = np.arange(len(emotions))
|
| 1069 |
+
width = 0.25
|
| 1070 |
+
|
| 1071 |
+
plt.bar(x - width, text_scores, width, label='Text')
|
| 1072 |
+
plt.bar(x, acoustic_scores, width, label='Acoustic')
|
| 1073 |
+
plt.bar(x + width, final_scores, width, label='Final')
|
| 1074 |
+
|
| 1075 |
+
plt.xlabel('Emotions')
|
| 1076 |
+
plt.ylabel('Probability')
|
| 1077 |
+
plt.title('Emotion Prediction Results')
|
| 1078 |
+
plt.xticks(x, emotions, rotation=45)
|
| 1079 |
+
plt.legend()
|
| 1080 |
+
|
| 1081 |
+
plt.tight_layout()
|
| 1082 |
+
plt.show()
|
| 1083 |
+
except Exception as e:
|
| 1084 |
+
print(f"Error creating visualization: {e}")
|
| 1085 |
+
|
| 1086 |
+
except Exception as e:
|
| 1087 |
+
print(f"Error in demo: {e}")
|
| 1088 |
+
|
| 1089 |
+
# Part 13: Simplified dataset loading for RAVDESS dataset
|
| 1090 |
+
def load_ravdess_sample():
|
| 1091 |
+
"""
|
| 1092 |
+
Download a small sample from RAVDESS dataset for testing
|
| 1093 |
+
"""
|
| 1094 |
+
# Create directory for sample data
|
| 1095 |
+
sample_dir = "./sample_data"
|
| 1096 |
+
os.makedirs(sample_dir, exist_ok=True)
|
| 1097 |
+
|
| 1098 |
+
# Try to download a sample file
|
| 1099 |
+
try:
|
| 1100 |
+
import urllib.request
|
| 1101 |
+
|
| 1102 |
+
# Example file from RAVDESS dataset (happy emotion)
|
| 1103 |
+
url = "https://zenodo.org/record/1188976/files/Audio_Speech_Actors_01-24/Actor_01/03-01-01-01-01-01-01.wav"
|
| 1104 |
+
sample_path = os.path.join(sample_dir, "sample_happy.wav")
|
| 1105 |
+
|
| 1106 |
+
if not os.path.exists(sample_path):
|
| 1107 |
+
print(f"Downloading sample audio file from RAVDESS dataset...")
|
| 1108 |
+
urllib.request.urlretrieve(url, sample_path)
|
| 1109 |
+
print(f"Downloaded sample to {sample_path}")
|
| 1110 |
+
else:
|
| 1111 |
+
print(f"Sample file already exists at {sample_path}")
|
| 1112 |
+
|
| 1113 |
+
return sample_path
|
| 1114 |
+
except Exception as e:
|
| 1115 |
+
print(f"Error downloading RAVDESS sample: {e}")
|
| 1116 |
+
return None
|
| 1117 |
+
|
| 1118 |
+
# Part 14: Simplified main function with proper error handling
|
| 1119 |
+
def main():
|
| 1120 |
+
print("Starting Tone Classification System...")
|
| 1121 |
+
|
| 1122 |
+
try:
|
| 1123 |
+
# Create the pipeline
|
| 1124 |
+
pipeline = EmotionRecognitionPipeline()
|
| 1125 |
+
|
| 1126 |
+
# Try to load a sample file
|
| 1127 |
+
sample_audio_path = load_ravdess_sample()
|
| 1128 |
+
|
| 1129 |
+
if sample_audio_path and os.path.exists(sample_audio_path):
|
| 1130 |
+
demo_on_sample_audio(pipeline, sample_audio_path)
|
| 1131 |
+
else:
|
| 1132 |
+
print("\nNo sample audio file available.")
|
| 1133 |
+
print("To use the system, provide an audio file path when calling the demo_on_sample_audio function:")
|
| 1134 |
+
print("\ndemo_on_sample_audio(pipeline, '/path/to/your/audio.wav')")
|
| 1135 |
+
|
| 1136 |
+
except Exception as e:
|
| 1137 |
+
print(f"Error in main execution: {e}")
|
| 1138 |
+
print("\nTroubleshooting tips:")
|
| 1139 |
+
print("1. Check if your audio file exists and is in a supported format (WAV recommended)")
|
| 1140 |
+
print("2. Ensure you have sufficient memory for model loading")
|
| 1141 |
+
print("3. Try with a smaller model size in WhisperTranscriber (tiny instead of base)")
|
| 1142 |
+
print("4. Make sure you have stable internet connection for model downloading")
|
| 1143 |
+
|
| 1144 |
+
if __name__ == "__main__":
|
| 1145 |
+
main()
|
| 1146 |
+
|
| 1147 |
+
|
| 1148 |
+
# Add this after the main() function definition but before the if __name__ == "__main__": line
|
| 1149 |
+
def upload_and_analyze():
|
| 1150 |
+
from IPython.display import display
|
| 1151 |
+
import ipywidgets as widgets
|
| 1152 |
+
|
| 1153 |
+
# Create upload widget
|
| 1154 |
+
upload_widget = widgets.FileUpload(
|
| 1155 |
+
accept='.wav, .mp3',
|
| 1156 |
+
multiple=False,
|
| 1157 |
+
description='Upload Audio File',
|
| 1158 |
+
button_style='primary'
|
| 1159 |
+
)
|
| 1160 |
+
display(upload_widget)
|
| 1161 |
+
|
| 1162 |
+
# Create button to trigger analysis
|
| 1163 |
+
analyze_button = widgets.Button(description='Analyze Audio')
|
| 1164 |
+
display(analyze_button)
|
| 1165 |
+
|
| 1166 |
+
# Create output area for results
|
| 1167 |
+
output = widgets.Output()
|
| 1168 |
+
display(output)
|
| 1169 |
+
|
| 1170 |
+
def on_analyze_click(b):
|
| 1171 |
+
with output:
|
| 1172 |
+
output.clear_output()
|
| 1173 |
+
if not upload_widget.value:
|
| 1174 |
+
print("Please upload an audio file first.")
|
| 1175 |
+
return
|
| 1176 |
+
|
| 1177 |
+
# Get the uploaded file
|
| 1178 |
+
file_data = next(iter(upload_widget.value.values()))
|
| 1179 |
+
file_name = next(iter(upload_widget.value.keys()))
|
| 1180 |
+
|
| 1181 |
+
# Save to temp file
|
| 1182 |
+
temp_file = f"./temp_{file_name}"
|
| 1183 |
+
with open(temp_file, 'wb') as f:
|
| 1184 |
+
f.write(file_data['content'])
|
| 1185 |
+
|
| 1186 |
+
print(f"Analyzing uploaded file: {file_name}")
|
| 1187 |
+
|
| 1188 |
+
# Create pipeline and analyze
|
| 1189 |
+
pipeline = EmotionRecognitionPipeline()
|
| 1190 |
+
demo_on_sample_audio(pipeline, temp_file)
|
| 1191 |
+
|
| 1192 |
+
analyze_button.on_click(on_analyze_click)
|
| 1193 |
+
|
| 1194 |
+
# Then modify the if __name__ == "__main__": section
|
| 1195 |
+
if __name__ == "__main__":
|
| 1196 |
+
try:
|
| 1197 |
+
import ipywidgets
|
| 1198 |
+
# If ipywidgets is available, we're in a notebook
|
| 1199 |
+
print("Running in notebook mode - use the upload widget below:")
|
| 1200 |
+
upload_and_analyze()
|
| 1201 |
+
except ImportError:
|
| 1202 |
+
# Otherwise, run the standard main function
|
| 1203 |
+
main()
|
| 1204 |
+
|
| 1205 |
+
|
| 1206 |
+
import os
|
| 1207 |
+
import numpy as np
|
| 1208 |
+
import torch
|
| 1209 |
+
import matplotlib.pyplot as plt
|
| 1210 |
+
import gradio as gr
|
| 1211 |
+
from io import BytesIO
|
| 1212 |
+
|
| 1213 |
+
# Use the existing EmotionRecognitionPipeline class from your code
|
| 1214 |
+
|
| 1215 |
+
def analyze_audio(audio_path):
|
| 1216 |
+
"""
|
| 1217 |
+
Analyze an audio file and return the emotion recognition results
|
| 1218 |
+
"""
|
| 1219 |
+
if audio_path is None:
|
| 1220 |
+
return "Please provide an audio file.", None, None
|
| 1221 |
+
|
| 1222 |
+
try:
|
| 1223 |
+
# Create the pipeline
|
| 1224 |
+
pipeline = EmotionRecognitionPipeline()
|
| 1225 |
+
|
| 1226 |
+
# Predict emotion from audio
|
| 1227 |
+
result = pipeline.predict(audio_path)
|
| 1228 |
+
|
| 1229 |
+
# Format the results for display
|
| 1230 |
+
transcription = result['transcription']
|
| 1231 |
+
predicted_emotion = result['predicted_emotion'].upper()
|
| 1232 |
+
is_sarcastic = 'Yes' if result['is_sarcastic'] else 'No'
|
| 1233 |
+
|
| 1234 |
+
# Create text summary
|
| 1235 |
+
summary = f"Transcription: {transcription}\n\n"
|
| 1236 |
+
summary += f"Predicted Emotion: {predicted_emotion}\n"
|
| 1237 |
+
summary += f"Is Sarcastic: {is_sarcastic}\n\n"
|
| 1238 |
+
|
| 1239 |
+
summary += "Text-based Emotions:\n"
|
| 1240 |
+
for emotion, score in result['text_emotions'].items():
|
| 1241 |
+
summary += f" {emotion}: {score:.4f}\n"
|
| 1242 |
+
|
| 1243 |
+
summary += "\nAcoustic-based Emotions:\n"
|
| 1244 |
+
for emotion, score in result['acoustic_emotions'].items():
|
| 1245 |
+
summary += f" {emotion}: {score:.4f}\n"
|
| 1246 |
+
|
| 1247 |
+
summary += "\nFinal Fusion Emotions:\n"
|
| 1248 |
+
for emotion, score in result['final_emotions'].items():
|
| 1249 |
+
summary += f" {emotion}: {score:.4f}\n"
|
| 1250 |
+
|
| 1251 |
+
if 'errors' in result and result['errors']:
|
| 1252 |
+
summary += "\nErrors encountered:\n"
|
| 1253 |
+
for error in result['errors']:
|
| 1254 |
+
summary += f" - {error}\n"
|
| 1255 |
+
|
| 1256 |
+
# Create visualization
|
| 1257 |
+
fig = create_emotion_plot(result)
|
| 1258 |
+
|
| 1259 |
+
return summary, fig, result['predicted_emotion']
|
| 1260 |
+
except Exception as e:
|
| 1261 |
+
return f"Error analyzing audio: {str(e)}", None, "error"
|
| 1262 |
+
|
| 1263 |
+
def create_emotion_plot(result):
|
| 1264 |
+
"""
|
| 1265 |
+
Create a visualization of the emotion recognition results
|
| 1266 |
+
"""
|
| 1267 |
+
emotions = list(result['text_emotions'].keys())
|
| 1268 |
+
text_scores = list(result['text_emotions'].values())
|
| 1269 |
+
acoustic_scores = list(result['acoustic_emotions'].values())
|
| 1270 |
+
final_scores = list(result['final_emotions'].values())
|
| 1271 |
+
|
| 1272 |
+
fig = plt.figure(figsize=(10, 6))
|
| 1273 |
+
|
| 1274 |
+
x = np.arange(len(emotions))
|
| 1275 |
+
width = 0.25
|
| 1276 |
+
|
| 1277 |
+
plt.bar(x - width, text_scores, width, label='Text')
|
| 1278 |
+
plt.bar(x, acoustic_scores, width, label='Acoustic')
|
| 1279 |
+
plt.bar(x + width, final_scores, width, label='Final')
|
| 1280 |
+
|
| 1281 |
+
plt.xlabel('Emotions')
|
| 1282 |
+
plt.ylabel('Probability')
|
| 1283 |
+
plt.title('Emotion Recognition Results')
|
| 1284 |
+
plt.xticks(x, emotions, rotation=45)
|
| 1285 |
+
plt.legend()
|
| 1286 |
+
plt.tight_layout()
|
| 1287 |
+
|
| 1288 |
+
return fig
|
| 1289 |
+
|
| 1290 |
+
# Create the Gradio interface with tabs for microphone and file upload
|
| 1291 |
+
def create_gradio_interface():
|
| 1292 |
+
with gr.Blocks(title="Tone Classification System") as demo:
|
| 1293 |
+
gr.Markdown("# Tone Classification System")
|
| 1294 |
+
gr.Markdown("This system analyzes audio to detect emotions, including sarcasm and figures of speech.")
|
| 1295 |
+
|
| 1296 |
+
with gr.Tabs():
|
| 1297 |
+
with gr.TabItem("Microphone Input"):
|
| 1298 |
+
with gr.Row():
|
| 1299 |
+
with gr.Column():
|
| 1300 |
+
audio_input = gr.Audio(
|
| 1301 |
+
sources=["microphone"],
|
| 1302 |
+
type="filepath",
|
| 1303 |
+
label="Record your voice"
|
| 1304 |
+
)
|
| 1305 |
+
analyze_btn = gr.Button("Analyze Recording", variant="primary")
|
| 1306 |
+
|
| 1307 |
+
with gr.Column():
|
| 1308 |
+
result_text = gr.Textbox(label="Analysis Results", lines=15)
|
| 1309 |
+
emotion_plot = gr.Plot(label="Emotion Probabilities")
|
| 1310 |
+
emotion_label = gr.Label(label="Detected Emotion")
|
| 1311 |
+
|
| 1312 |
+
analyze_btn.click(
|
| 1313 |
+
fn=analyze_audio,
|
| 1314 |
+
inputs=audio_input,
|
| 1315 |
+
outputs=[result_text, emotion_plot, emotion_label]
|
| 1316 |
+
)
|
| 1317 |
+
|
| 1318 |
+
with gr.TabItem("File Upload"):
|
| 1319 |
+
with gr.Row():
|
| 1320 |
+
with gr.Column():
|
| 1321 |
+
file_input = gr.Audio(
|
| 1322 |
+
sources=["upload"],
|
| 1323 |
+
type="filepath",
|
| 1324 |
+
label="Upload audio file (.wav, .mp3)"
|
| 1325 |
+
)
|
| 1326 |
+
file_analyze_btn = gr.Button("Analyze File", variant="primary")
|
| 1327 |
+
|
| 1328 |
+
with gr.Column():
|
| 1329 |
+
file_result_text = gr.Textbox(label="Analysis Results", lines=15)
|
| 1330 |
+
file_emotion_plot = gr.Plot(label="Emotion Probabilities")
|
| 1331 |
+
file_emotion_label = gr.Label(label="Detected Emotion")
|
| 1332 |
+
|
| 1333 |
+
file_analyze_btn.click(
|
| 1334 |
+
fn=analyze_audio,
|
| 1335 |
+
inputs=file_input,
|
| 1336 |
+
outputs=[file_result_text, file_emotion_plot, file_emotion_label]
|
| 1337 |
+
)
|
| 1338 |
+
|
| 1339 |
+
gr.Markdown("## How to Use")
|
| 1340 |
+
gr.Markdown("""
|
| 1341 |
+
1. **Microphone Input**: Record your voice and click 'Analyze Recording'
|
| 1342 |
+
2. **File Upload**: Upload an audio file (.wav or .mp3) and click 'Analyze File'
|
| 1343 |
+
|
| 1344 |
+
The system will transcribe the speech, analyze emotions from both text and acoustic features,
|
| 1345 |
+
and display the results with a visualization of emotion probabilities.
|
| 1346 |
+
""")
|
| 1347 |
+
|
| 1348 |
+
gr.Markdown("## About")
|
| 1349 |
+
gr.Markdown("""
|
| 1350 |
+
This tone classification system combines text and acoustic features to detect emotions in speech.
|
| 1351 |
+
It uses a multi-modal approach with:
|
| 1352 |
+
|
| 1353 |
+
- Speech-to-text transcription
|
| 1354 |
+
- Text-based emotion analysis
|
| 1355 |
+
- Acoustic feature extraction
|
| 1356 |
+
- Fusion of both modalities for final prediction
|
| 1357 |
+
|
| 1358 |
+
The system can detect: neutral, happy, sad, angry, fearful, disgust, surprised, and sarcastic tones.
|
| 1359 |
+
""")
|
| 1360 |
+
|
| 1361 |
+
return demo
|
| 1362 |
+
|
| 1363 |
+
# Main function to launch the Gradio interface
|
| 1364 |
+
def main():
|
| 1365 |
+
demo = create_gradio_interface()
|
| 1366 |
+
demo.launch()
|
| 1367 |
+
|
| 1368 |
+
if __name__ == "__main__":
|
| 1369 |
+
main()
|