Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,57 +1,58 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
import os
|
| 3 |
-
import
|
| 4 |
-
|
| 5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
-
from
|
| 7 |
-
from
|
| 8 |
from langchain.chains import RetrievalQA
|
| 9 |
-
from
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
#
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
)
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
from langchain_community.document_loaders import TextLoader
|
|
|
|
| 3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 4 |
+
from langchain_community.vectorstores import FAISS
|
| 5 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 6 |
from langchain.chains import RetrievalQA
|
| 7 |
+
from langchain_community.llms import HuggingFaceHub
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import re
|
| 10 |
+
|
| 11 |
+
# 1. Загрузка и очистка всех .txt файлов
|
| 12 |
+
def load_documents(folder_path):
|
| 13 |
+
documents = []
|
| 14 |
+
for file_name in os.listdir(folder_path):
|
| 15 |
+
if file_name.endswith(".txt"):
|
| 16 |
+
loader = TextLoader(os.path.join(folder_path, file_name), encoding="utf-8")
|
| 17 |
+
docs = loader.load()
|
| 18 |
+
for doc in docs:
|
| 19 |
+
# Очищаем спецсимволы типа [=/ и прочую ерунду
|
| 20 |
+
doc.page_content = re.sub(r'\[=/.*?\]', '', doc.page_content)
|
| 21 |
+
documents.append(doc)
|
| 22 |
+
return documents
|
| 23 |
+
|
| 24 |
+
# 2. Разбивка на чанки
|
| 25 |
+
def split_documents(documents):
|
| 26 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=100)
|
| 27 |
+
return splitter.split_documents(documents)
|
| 28 |
+
|
| 29 |
+
# 3. Создание эмбеддингов
|
| 30 |
+
def create_embeddings():
|
| 31 |
+
return HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
| 32 |
+
|
| 33 |
+
# 4. Загрузка модели
|
| 34 |
+
def load_llm():
|
| 35 |
+
return HuggingFaceHub(
|
| 36 |
+
repo_id="IlyaGusev/saiga_mistral_7b_gguf", # можно заменить на что-то другое, если будет падать
|
| 37 |
+
model_kwargs={"temperature": 0.6, "max_new_tokens": 300}
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
# 5. Построение цепочки
|
| 41 |
+
def build_qa_chain():
|
| 42 |
+
raw_docs = load_documents("lore") # Папка lore/ рядом с app.py
|
| 43 |
+
docs = split_documents(raw_docs)
|
| 44 |
+
embeddings = create_embeddings()
|
| 45 |
+
db = FAISS.from_documents(docs, embeddings)
|
| 46 |
+
retriever = db.as_retriever()
|
| 47 |
+
llm = load_llm()
|
| 48 |
+
return RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
|
| 49 |
+
|
| 50 |
+
# 6. Интерфейс
|
| 51 |
+
qa_chain = build_qa_chain()
|
| 52 |
+
|
| 53 |
+
def answer_question(question):
|
| 54 |
+
result = qa_chain.run(question)
|
| 55 |
+
return result
|
| 56 |
+
|
| 57 |
+
iface = gr.Interface(fn=answer_question, inputs="text", outputs="text", title="Чат по Лору (RU)")
|
| 58 |
+
iface.launch()
|