YingxuHe commited on
Commit
a083b75
·
1 Parent(s): 1f2ebc8

update tamil page

Browse files
app/content.py CHANGED
@@ -212,6 +212,7 @@ wer_displayname2datasetname = {
212
  'YouTube ASR: Malay with English Prompt': 'ytb_asr_batch3_malay',
213
  'YouTube ASR: Chinese with English Prompt': 'ytb_asr_batch3_chinese',
214
  'YouTube ASR: Tamil with English Prompt': 'ytb_asr_batch3_tamil',
 
215
 
216
  'YouTube ASR: Malay with Malay Prompt': 'ytb_asr_batch3_ms_ms_prompt',
217
  'YouTube ASR: Chinese with Chinese Prompt': 'ytb_asr_batch3_zh_zh_prompt',
@@ -384,6 +385,8 @@ dataset_diaplay_information = {
384
 
385
  'YouTube ASR: Tamil with English Prompt': 'YouTube Evaluation Dataset for ASR Task: <br> This dataset contains Tamil and some Tamil-English codeswitch audio clips, featuring with English prompts. <br> It includes approximately 2.44 hours of audio, with individual clips ranging from 30 seconds to 324 seconds in length.',
386
 
 
 
387
  'YouTube ASR Translation: Malay2English': 'YouTube Evaluation Dataset for ASR Task: <br> The audio of dataset is same as <i>YouTube ASR: Malay<i>',
388
 
389
  # 'YouTube ASR Translation: Chinese2English': 'YouTube Evaluation Dataset for ASR Task: <br> The audio of dataset is same as <i>YouTube ASR: Chinese<i>',
 
212
  'YouTube ASR: Malay with English Prompt': 'ytb_asr_batch3_malay',
213
  'YouTube ASR: Chinese with English Prompt': 'ytb_asr_batch3_chinese',
214
  'YouTube ASR: Tamil with English Prompt': 'ytb_asr_batch3_tamil',
215
+ 'YouTube ASR: Tamil with English Prompt V2': 'ytb_asr_batch3_tamil_v2',
216
 
217
  'YouTube ASR: Malay with Malay Prompt': 'ytb_asr_batch3_ms_ms_prompt',
218
  'YouTube ASR: Chinese with Chinese Prompt': 'ytb_asr_batch3_zh_zh_prompt',
 
385
 
386
  'YouTube ASR: Tamil with English Prompt': 'YouTube Evaluation Dataset for ASR Task: <br> This dataset contains Tamil and some Tamil-English codeswitch audio clips, featuring with English prompts. <br> It includes approximately 2.44 hours of audio, with individual clips ranging from 30 seconds to 324 seconds in length.',
387
 
388
+ 'YouTube ASR: Tamil with English Prompt V2': 'YouTube Evaluation Dataset for ASR Task: <br> This dataset contains Tamil and some Tamil-English codeswitch audio clips, featuring with English prompts. <br> It includes approximately 2.44 hours of audio, with individual clips ranging from 30 seconds to 324 seconds in length.',
389
+
390
  'YouTube ASR Translation: Malay2English': 'YouTube Evaluation Dataset for ASR Task: <br> The audio of dataset is same as <i>YouTube ASR: Malay<i>',
391
 
392
  # 'YouTube ASR Translation: Chinese2English': 'YouTube Evaluation Dataset for ASR Task: <br> The audio of dataset is same as <i>YouTube ASR: Chinese<i>',
app/summarization.py CHANGED
@@ -29,6 +29,9 @@ def sum_table_mulit_metrix(task_name, metrics_lists: List[str]):
29
  chart_data = pd.merge(chart_data, one_chart_data, on='Model', how='outer')
30
 
31
  selected_columns = [i for i in chart_data.columns if i != 'Model']
 
 
 
32
  chart_data['Average'] = chart_data[selected_columns].mean(axis=1)
33
 
34
  # Update dataset name in table
@@ -54,8 +57,11 @@ def sum_table_mulit_metrix(task_name, metrics_lists: List[str]):
54
  sorted(chart_data['model_show'].tolist()),
55
  default = sorted(chart_data['model_show'].tolist()),
56
  )
57
-
58
- chart_data = chart_data[chart_data['model_show'].isin(models)].dropna(axis=0)
 
 
 
59
 
60
  if len(chart_data) == 0: return
61
 
 
29
  chart_data = pd.merge(chart_data, one_chart_data, on='Model', how='outer')
30
 
31
  selected_columns = [i for i in chart_data.columns if i != 'Model']
32
+ # TODO: temp code. delete this after ytb tamil vs is fully tested.
33
+ _columns_to_exclude_from_average = ["ytb_asr_batch3_tamil_v2"]
34
+ selected_columns = [col for col in selected_columns if col not in _columns_to_exclude_from_average]
35
  chart_data['Average'] = chart_data[selected_columns].mean(axis=1)
36
 
37
  # Update dataset name in table
 
57
  sorted(chart_data['model_show'].tolist()),
58
  default = sorted(chart_data['model_show'].tolist()),
59
  )
60
+ # TODO: delete this after ytb tamil v2 is fully utilized.
61
+ if task_name == 'asr_tamil':
62
+ chart_data = chart_data[chart_data['model_show'].isin(models)]
63
+ else:
64
+ chart_data = chart_data[chart_data['model_show'].isin(models)].dropna(axis=0)
65
 
66
  if len(chart_data) == 0: return
67
 
model_information.py CHANGED
@@ -14,7 +14,7 @@ data['Link'].append('https://arxiv.org/abs/2511.09690')
14
 
15
  data['Original Name'].append('MERaLiON-ASR-dev-1215')
16
  data['Proper Display Name'].append('🌟 API: MERaLiON-ASR-dev-1215')
17
- data['Link'].append("")
18
 
19
  data['Original Name'].append('SALMONN_7B')
20
  data['Proper Display Name'].append('Fusion: SALMONN-7B')
@@ -95,6 +95,6 @@ def get_dataframe():
95
  Returns a DataFrame with the data and drops rows with missing values.
96
  """
97
  df = pd.DataFrame(data)
98
- return df.dropna(axis=0)
99
 
100
 
 
14
 
15
  data['Original Name'].append('MERaLiON-ASR-dev-1215')
16
  data['Proper Display Name'].append('🌟 API: MERaLiON-ASR-dev-1215')
17
+ data['Link'].append(None)
18
 
19
  data['Original Name'].append('SALMONN_7B')
20
  data['Proper Display Name'].append('Fusion: SALMONN-7B')
 
95
  Returns a DataFrame with the data and drops rows with missing values.
96
  """
97
  df = pd.DataFrame(data)
98
+ return df
99
 
100
 
results_organized/wer/asr_tamil.csv CHANGED
@@ -1,18 +1,18 @@
1
- Model,commonvoice_17_ta_asr,fleurs_tamil_ta_30_asr,ytb_asr_batch3_tamil
2
- MERaLiON-AudioLLM-Whisper-SEA-LION,0.5284951114826634,0.4624736472241743,0.6929759165018962
3
- MERaLiON-AudioLLM-v2-2b,0.1385300804387941,0.1432185523541813,0.7504943113675407
4
- MERaLiON-AudioLLM-v2-9b,0.1559177057102368,0.1608573436401967,0.6644679264853651
5
- MERaLiON-AudioLLM-v2-9b-asr,0.1287122656417262,0.1383345045678145,0.5467894071504975
6
- Qwen2.5-Omni-3B,0.8307319012713203,1.653935347856641,1.460763022268322
7
- Qwen2.5-Omni-7B,0.8465494917777076,0.8666549543218552,1.3615441962983372
8
- SALMONN_7B,1.4272941368377052,1.507519325368939,0.985267900554277
9
- SeaLLMs-Audio-7B,1.2968793010286783,2.061876317638791,3.617451622313701
10
- cascade_whisper_large_v2_gemma2_9b_cpt_sea_lionv3_instruct,0.2380539724938065,0.2724525650035137,0.9665002755178114
11
- cascade_whisper_large_v3_llama_3_8b_instruct,0.2440435531721838,0.283977512297962,0.8976532365239376
12
- hy_whisper_local_cs,0.3179371374392121,0.3311314125087842,0.8339924151567211
13
- phi_4_multimodal_instruct,1.1784589191228196,1.7016514406184118,2.750056724255292
14
- whisper_large_v3,0.2448438631011245,0.2314476458186929,0.8481572720495284
15
- MERaLiON-SpeechEncoder2-ASR-CTC,0.1442,0.1632,0.6578
16
- Omnilingual-ASR-7B,0.3144055763521363,0.1062680115273775,0.867817443980474
17
- Fusion: Omnilingual-LLM-ASR-7B[with language code],0.3144055763521363,0.1062680115273775,0.8675527848026818
18
- MERaLiON-ASR-dev-1215,0.12422135451181095,0.13475052705551652,0.49745551197692134
 
1
+ Model,commonvoice_17_ta_asr,fleurs_tamil_ta_30_asr,ytb_asr_batch3_tamil,ytb_asr_batch3_tamil_v2
2
+ MERaLiON-AudioLLM-Whisper-SEA-LION,0.5284951114826634,0.4624736472241743,0.6929759165018962,
3
+ MERaLiON-AudioLLM-v2-2b,0.1385300804387941,0.1432185523541813,0.7504943113675407,
4
+ MERaLiON-AudioLLM-v2-9b,0.1559177057102368,0.1608573436401967,0.6644679264853651,0.5082255864938114
5
+ MERaLiON-AudioLLM-v2-9b-asr,0.1287122656417262,0.1383345045678145,0.5467894071504975,0.3790156916225034
6
+ Qwen2.5-Omni-3B,0.8307319012713203,1.653935347856641,1.460763022268322,
7
+ Qwen2.5-Omni-7B,0.8465494917777076,0.8666549543218552,1.3615441962983372,
8
+ SALMONN_7B,1.4272941368377052,1.507519325368939,0.985267900554277,
9
+ SeaLLMs-Audio-7B,1.2968793010286783,2.061876317638791,3.617451622313701,
10
+ cascade_whisper_large_v2_gemma2_9b_cpt_sea_lionv3_instruct,0.2380539724938065,0.2724525650035137,0.9665002755178114,
11
+ cascade_whisper_large_v3_llama_3_8b_instruct,0.2440435531721838,0.283977512297962,0.8976532365239376,
12
+ hy_whisper_local_cs,0.3179371374392121,0.3311314125087842,0.8339924151567211,
13
+ phi_4_multimodal_instruct,1.1784589191228196,1.7016514406184118,2.750056724255292,
14
+ whisper_large_v3,0.2448438631011245,0.2314476458186929,0.8481572720495284,
15
+ MERaLiON-SpeechEncoder2-ASR-CTC,0.1442,0.1632,0.6578,
16
+ Omnilingual-ASR-7B,0.3144055763521363,0.1062680115273775,0.867817443980474,
17
+ Fusion: Omnilingual-LLM-ASR-7B[with language code],0.3144055763521363,0.1062680115273775,0.8675527848026818,
18
+ MERaLiON-ASR-dev-1215,0.12422135451181095,0.13475052705551652,0.49745551197692134,0.3112948609504739