File size: 29,940 Bytes
97bc03d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 |
import os
import sys
import spaces
import gradio as gr
import numpy as np
import torch
import random
import time
from PIL import Image
from huggingface_hub import hf_hub_download
import subprocess
subprocess.run(
"pip install flash-attn==2.7.3 --no-build-isolation",
shell=True
)
from star.models.config import load_config_from_json, STARMultiModalConfig
from star.models.model import STARMultiModal
TEXTS = {
"zh": {
"title": "🌟 STAR 多模态演示",
"description": "基于STAR模型的多模态AI演示系统,支持文本生成图像、图像编辑和图像理解功能。",
"please_load_model": "请先加载模型!",
"please_upload_image": "请上传图像!",
"generation_failed": "生成失败!",
"generation_success_diffusion": "生成成功!",
"generation_success_vq": "生成成功!",
"edit_failed": "编辑失败!",
"edit_success_diffusion": "编辑成功!",
"edit_success_vq": "编辑成功!",
"understanding_failed": "理解失败!",
"generation_error": "生成过程中出错: ",
"edit_error": "编辑过程中出错: ",
"understanding_error": "理解过程中出错: ",
"tab_text_to_image": "🖼️ 文本生成图像",
"tab_image_edit": "🖌️ 图像编辑",
"tab_image_understanding": "📝 图像理解",
"text_prompt": "文本提示",
"text_prompt_placeholder": "A whimsical scene featuring a small elf with pointed ears and a green hat, sipping orange juice through a long straw from a disproportionately large orange. Next to the elf, a curious squirrel perches on its hind legs, while an owl with wide, observant eyes watches intently from a branch overhead. The orange's vibrant color contrasts with the muted browns and greens of the surrounding forest foliage.",
"advanced_params": "高级参数",
"cfg_scale": "CFG Scale",
"cfg_scale_info": "控制生成图像与文本的匹配程度",
"top_k": "Top-K",
"top_k_info": "采样时考虑的token数量",
"top_p": "Top-P",
"top_p_info": "核采样参数",
"generate_image": "🎨 生成图像",
"generated_image": "生成的图像",
"generation_status": "生成状态",
"input_image": "输入图像",
"edit_instruction": "编辑指令",
"edit_instruction_placeholder": "Remove the tiger in the water.",
"edit_image": "✏️ 编辑图像",
"edited_image": "编辑后的图像",
"edit_status": "编辑状态",
"question": "问题",
"question_placeholder": "Please describe the content of this image",
"max_generation_length": "最大生成长度",
"understand_image": "🔍 理解图像",
"understanding_result": "理解结果",
"usage_instructions": "使用说明",
"usage_step1": "1. **文本生成图像**: 输入文本描述,调整参数后点击生成",
"usage_step2": "2. **图像编辑**: 上传图像并输入编辑指令",
"usage_step3": "3. **图像理解**: 上传图像并提出问题",
"language": "语言 / Language"
},
"en": {
"title": "🌟 STAR Multi-Modal Demo",
"description": "A multi-modal AI demonstration system based on STAR model, supporting text-to-image generation, image editing, and image understanding.",
"please_load_model": "Please load the model first!",
"please_upload_image": "Please upload an image!",
"generation_failed": "Generation failed!",
"generation_success_diffusion": "Generation successful! ",
"generation_success_vq": "Generation successful! Using VQ decoder",
"edit_failed": "Editing failed!",
"edit_success_diffusion": "Editing successful! ",
"edit_success_vq": "Editing successful! Using VQ decoder",
"understanding_failed": "Understanding failed!",
"generation_error": "Error during generation: ",
"edit_error": "Error during editing: ",
"understanding_error": "Error during understanding: ",
"tab_text_to_image": "🖼️ Text to Image",
"tab_image_edit": "🖌️ Image Editing",
"tab_image_understanding": "📝 Image Understanding",
"text_prompt": "Text Prompt",
"text_prompt_placeholder": "A whimsical scene featuring a small elf with pointed ears and a green hat, sipping orange juice through a long straw from a disproportionately large orange. Next to the elf, a curious squirrel perches on its hind legs, while an owl with wide, observant eyes watches intently from a branch overhead. The orange's vibrant color contrasts with the muted browns and greens of the surrounding forest foliage.",
"advanced_params": "Advanced Parameters",
"cfg_scale": "CFG Scale",
"cfg_scale_info": "Controls how closely the generated image matches the text",
"top_k": "Top-K",
"top_k_info": "Number of tokens to consider during sampling",
"top_p": "Top-P",
"top_p_info": "Nucleus sampling parameter",
"generate_image": "🎨 Generate Image",
"generated_image": "Generated Image",
"generation_status": "Generation Status",
"input_image": "Input Image",
"edit_instruction": "Edit Instruction",
"edit_instruction_placeholder": "Remove the tiger in the water.",
"edit_image": "✏️ Edit Image",
"edited_image": "Edited Image",
"edit_status": "Edit Status",
"question": "Question",
"question_placeholder": "Please describe the content of this image",
"max_generation_length": "Max Generation Length",
"understand_image": "🔍 Understand Image",
"understanding_result": "Understanding Result",
"usage_instructions": "Usage Instructions",
"usage_step1": "1. **Text to Image**: Enter text description, adjust parameters and click generate",
"usage_step2": "2. **Image Editing**: Upload an image and enter editing instructions",
"usage_step3": "3. **Image Understanding**: Upload an image and ask questions",
"language": "语言 / Language"
}
}
class MockArgs:
def __init__(self):
self.data_type = "generation"
self.diffusion_as_decoder = True
self.ori_inp_dit = "seq"
self.grad_ckpt = False
self.diffusion_resolution = 1024
self.max_diff_seq_length = 256
self.max_seq_length = 8192
self.max_text_tokens = 512
self.max_pixels = 28 * 28 * 576
self.min_pixels = 28 * 28 * 16
self.vq_image_size = 384
self.vq_tokens = 576
def set_seed(seed=100):
if seed > 0:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
return seed
def print_with_time(msg):
print(f"{time.strftime('%Y-%m-%d %H:%M:%S', time.localtime())}: {msg}")
class STARInferencer:
def __init__(self, model_config_path, checkpoint_path, vq_checkpoint, device="cpu"):
self.device = device
self.model_config_path = model_config_path
self.checkpoint_path = checkpoint_path
self.vq_checkpint_path = vq_checkpoint
self.model = None
self._load_model()
def _create_mock_args(self):
return MockArgs()
def _load_model(self):
try:
print_with_time("Loading model configuration...")
config_data = load_config_from_json(self.model_config_path)
model_config = STARMultiModalConfig(**config_data)
model_config.language_model.model_path = "Qwen/Qwen2.5-VL-7B-Instruct"
model_config.pixel_encoder.model_path = self.vq_checkpint_path
model_config.pixel_decoder.model_path = "Alpha-VLLM/Lumina-Image-2.0"
args = self._create_mock_args()
print_with_time("Initializing model...")
self.model = STARMultiModal(model_config, args)
if os.path.exists(self.checkpoint_path):
print_with_time(f"Loading checkpoint from {self.checkpoint_path}")
with torch.no_grad():
checkpoint = torch.load(self.checkpoint_path, map_location='cpu', weights_only=False)
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
if not isinstance(state_dict, dict):
raise ValueError("Invalid checkpoint format")
print_with_time(f"Checkpoint contains {len(state_dict)} parameters")
self.model.load_state_dict(state_dict, strict=False)
print_with_time(f"Moving model to device: {self.device}")
self.model.to(self.device)
print_with_time("Setting model to eval mode...")
self.model.eval()
if torch.cuda.is_available():
print_with_time(f"GPU memory after model loading: {torch.cuda.memory_allocated()/1024**3:.2f}GB")
print_with_time("Model loaded successfully!")
except Exception as e:
print_with_time(f"Error loading model: {str(e)}")
import traceback
traceback.print_exc()
raise e
@spaces.GPU(duration=210)
def generate_image(self, prompt, num_images=1, cfg=20.0, topk=2000, topp=1.0, seed=0):
if self.model.device.type == 'cpu':
print_with_time("Moving model to GPU...")
self.model.to('cuda')
self.model.to(torch.bfloat16)
print_with_time("Model moved to GPU")
set_seed(seed)
print_with_time(f"Generating image for prompt: {prompt}")
cfg = max(1.0, min(20.0, float(cfg)))
topk = max(100, min(2000, int(topk)))
topp = max(0.1, min(1.0, float(topp)))
print_with_time(f"Using validated params: cfg={cfg}, topk={topk}, topp={topp}")
if not (torch.isfinite(torch.tensor(cfg)) and torch.isfinite(torch.tensor(topk)) and torch.isfinite(torch.tensor(topp))):
print_with_time("Warning: Non-finite parameters detected")
return None
try:
with torch.no_grad():
if torch.cuda.is_available():
torch.cuda.empty_cache()
print_with_time(f"GPU memory before generation: {torch.cuda.memory_allocated()/1024**3:.2f}GB")
if not isinstance(prompt, str) or len(prompt.strip()) == 0:
print_with_time("Warning: Invalid prompt")
return None
if not (0 < cfg <= 20 and 0 < topk <= 5000 and 0 < topp <= 1):
print_with_time(f"Warning: Invalid parameters - cfg={cfg}, topk={topk}, topp={topp}")
return None
print_with_time("Calling model.generate_images...")
safe_max_tokens = 576
output = self.model.generate_images(
prompt,
max_new_tokens=safe_max_tokens,
num_return_sequences=num_images,
cfg_weight=cfg,
topk_sample=topk,
topp_sample=topp,
reasoning=False,
return_dict=True
)
print_with_time("Model generation completed")
if output is None:
print_with_time("Warning: Model returned None output")
return None
print_with_time("Processing output images...")
result = self._process_output_images(output, num_images)
print_with_time("Image processing completed")
return result
except Exception as e:
print_with_time(f"Error during image generation: {str(e)}")
import traceback
traceback.print_exc()
if torch.cuda.is_available():
torch.cuda.empty_cache()
raise e
@spaces.GPU(duration=210)
def edit_image(self, image, instruction, num_images=1, cfg=20.0, topk=2000, topp=1.0, seed=0):
if self.model.device.type == 'cpu':
print_with_time("Moving model to GPU...")
self.model.to('cuda')
self.model.to(torch.bfloat16)
print_with_time("Model moved to GPU")
set_seed(seed)
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
print_with_time(f"Editing image with instruction: {instruction}")
with torch.no_grad():
output = self.model.generate_images_edit(
[image],
instruction,
max_new_tokens=576,
num_return_sequences=num_images,
cfg_weight=cfg,
topk_sample=topk,
topp_sample=topp,
return_dict=True
)
if output is None:
return None
return self._process_output_images(output, num_images)
@spaces.GPU(duration=180)
def understand_image(self, image, question, max_new_tokens=256):
if self.model.device.type == 'cpu':
print_with_time("Moving model to GPU...")
self.model.to('cuda')
self.model.to(torch.bfloat16)
print_with_time("Model moved to GPU")
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
print_with_time(f"Understanding image with question: {question}")
with torch.no_grad():
answer = self.model.inference_understand(
image=image,
question=question,
max_new_tokens=max_new_tokens
)
return answer
def _process_output_images(self, output, num_images):
image_size = 384
try:
if isinstance(output, dict):
output_images = output.get("output_images")
diff_images = output.get("diff_images")
results = {}
if output_images is not None:
if isinstance(output_images, torch.Tensor):
output_images = output_images.detach().cpu().numpy()
if output_images.size == 0:
print_with_time("Warning: Empty output_images array")
results["vq_images"] = None
else:
output_images = np.nan_to_num(output_images, nan=0.0, posinf=1.0, neginf=-1.0)
dec_vq = np.clip((output_images + 1) / 2 * 255, 0, 255)
if len(dec_vq.shape) == 3:
dec_vq = dec_vq.reshape(num_images, image_size, image_size, 3)
visual_img_vq = np.zeros((num_images, image_size, image_size, 3), dtype=np.uint8)
visual_img_vq[:, :, :] = dec_vq
imgs_vq = [Image.fromarray(visual_img_vq[j].astype(np.uint8)) for j in range(visual_img_vq.shape[0])]
results["vq_images"] = imgs_vq
if diff_images is not None:
results["diff_images"] = diff_images
else:
results["diff_images"] = None
return results
else:
if isinstance(output, torch.Tensor):
output = output.detach().cpu().numpy()
output = np.nan_to_num(output, nan=0.0, posinf=1.0, neginf=-1.0)
dec = np.clip((output + 1) / 2 * 255, 0, 255)
if len(dec.shape) == 3:
dec = dec.reshape(num_images, image_size, image_size, 3)
visual_img = np.zeros((num_images, image_size, image_size, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
imgs = [Image.fromarray(visual_img[j].astype(np.uint8)) for j in range(visual_img.shape[0])]
return {"vq_images": imgs, "diff_images": None}
except Exception as e:
print_with_time(f"Error in _process_output_images: {str(e)}")
return {"vq_images": None, "diff_images": None}
inferencer = None
def save_language_setting(language):
try:
with open('.language_setting', 'w') as f:
f.write(language)
except:
pass
def update_interface_language(language):
global current_language
current_language = language
save_language_setting(language)
return [
language,
f"# {get_text('title')}",
get_text("description"),
get_text("text_prompt_placeholder"),
get_text("edit_instruction_placeholder"),
get_text("question_placeholder"),
f"""
---
### {get_text("usage_instructions")}
{get_text("usage_step1")}
{get_text("usage_step2")}
{get_text("usage_step3")}
""",
f"✅ Language switched to {language.upper()} successfully! / 语言已成功切换为{language.upper()}!" # 状态消息
]
current_language = "en"
def get_text(key):
return TEXTS[current_language].get(key, key)
def auto_detect_device():
if torch.cuda.is_available():
device = f"cuda:{torch.cuda.current_device()}"
print_with_time(f"Detected CUDA device: {device}")
print_with_time(f"GPU name: {torch.cuda.get_device_name()}")
print_with_time(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f}GB")
else:
device = "cpu"
print_with_time("No CUDA device detected, using CPU")
return device
def initialize_model_on_startup():
global inferencer
default_checkpoint = hf_hub_download(
repo_id="MM-MVR/STAR-7B",
filename="STAR-7B.pt"
)
default_config = "star/configs/STAR_Qwen2.5-VL-7B.json"
vq_checkpoint = hf_hub_download(
repo_id="MM-MVR/STAR-VQ",
filename="VQ-Model.pt"
)
if not os.path.exists(default_config):
print_with_time(f"⚠️ Model config file not found: {default_config}")
return False, f"Model config file not found: {default_config}"
if not os.path.exists(default_checkpoint):
print_with_time(f"⚠️ Model checkpoint file not found: {default_checkpoint}")
return False, f"Model checkpoint file not found: {default_checkpoint}"
try:
device = 'cpu'
print_with_time("Starting to load STAR model...")
inferencer = STARInferencer(default_config, default_checkpoint, vq_checkpoint, device)
print_with_time("✅ STAR model loaded successfully!")
return True, "✅ STAR model loaded successfully!"
except Exception as e:
error_msg = f"❌ Model loading failed: {str(e)}"
print_with_time(error_msg)
return False, error_msg
def text_to_image(prompt, cfg_scale=1.0, topk=1000, topp=0.8):
if inferencer is None:
return None, get_text("please_load_model")
cfg_scale = max(1.0, min(20.0, cfg_scale))
topk = max(100, min(2000, int(topk)))
topp = max(0.1, min(1.0, topp))
seed = 100
try:
print_with_time(f"Starting generation with params: cfg={cfg_scale}, topk={topk}, topp={topp}, seed={seed}")
result = inferencer.generate_image(prompt, cfg=cfg_scale, topk=topk, topp=topp, seed=seed)
if result is None:
return None, get_text("generation_failed")
if result.get("diff_images") and len(result["diff_images"]) > 0:
return result["diff_images"][0], get_text("generation_success_diffusion")
elif result.get("vq_images") and len(result["vq_images"]) > 0:
return result["vq_images"][0], get_text("generation_success_vq")
else:
return None, get_text("generation_failed")
except Exception as e:
return None, get_text("generation_error") + str(e)
def image_editing(image, instruction, cfg_scale=1.0, topk=1000, topp=0.8):
if inferencer is None:
return None, get_text("please_load_model")
if image is None:
return None, get_text("please_upload_image")
cfg_scale = max(1.0, min(20.0, cfg_scale))
topk = max(100, min(2000, int(topk)))
topp = max(0.1, min(1.0, topp))
seed = 100
try:
print_with_time(f"Starting image editing with params: cfg={cfg_scale}, topk={topk}, topp={topp}, seed={seed}")
result = inferencer.edit_image(image, instruction, cfg=cfg_scale, topk=topk, topp=topp, seed=seed)
if result is None:
return None, get_text("edit_failed")
if result.get("diff_images") and len(result["diff_images"]) > 0:
return result["diff_images"][0], get_text("edit_success_diffusion")
elif result.get("vq_images") and len(result["vq_images"]) > 0:
return result["vq_images"][0], get_text("edit_success_vq")
else:
return None, get_text("edit_failed")
except Exception as e:
return None, get_text("edit_error") + str(e)
def image_understanding(image, question, max_new_tokens=256):
if inferencer is None:
return get_text("please_load_model")
if image is None:
return get_text("please_upload_image")
try:
answer = inferencer.understand_image(image, question, max_new_tokens)
return answer if answer else get_text("understanding_failed")
except Exception as e:
return get_text("understanding_error") + str(e)
def change_language(language):
global current_language
current_language = language
return (
get_text("title"),
get_text("description"),
get_text("tab_text_to_image"),
get_text("text_prompt"),
get_text("text_prompt_placeholder"),
get_text("advanced_params"),
get_text("cfg_scale"),
get_text("cfg_scale_info"),
get_text("top_k"),
get_text("top_k_info"),
get_text("top_p"),
get_text("top_p_info"),
get_text("random_seed"),
get_text("random_seed_info"),
get_text("generate_image"),
get_text("generated_image"),
get_text("generation_status"),
get_text("tab_image_edit"),
get_text("input_image"),
get_text("edit_instruction"),
get_text("edit_instruction_placeholder"),
get_text("edit_image"),
get_text("edited_image"),
get_text("edit_status"),
get_text("tab_image_understanding"),
get_text("question"),
get_text("question_placeholder"),
get_text("max_generation_length"),
get_text("understand_image"),
get_text("understanding_result"),
get_text("usage_instructions"),
get_text("usage_step1"),
get_text("usage_step2"),
get_text("usage_step3")
)
def load_example_image(image_path):
try:
if os.path.exists(image_path):
return Image.open(image_path)
except Exception as e:
print(f"Error loading example image: {e}")
return None
def create_interface():
print_with_time("Initializing STAR demo system...")
model_loaded, status_message = initialize_model_on_startup()
with gr.Blocks(title="🌟 STAR Multi-Modal Demo", theme=gr.themes.Soft()) as demo:
language_state = gr.State(value=current_language)
title_md = gr.Markdown(f"# {get_text('title')}")
desc_md = gr.Markdown(get_text("description"))
with gr.Row():
with gr.Column():
language_dropdown = gr.Dropdown(
choices=[("English", "en"), ("中文", "zh")],
value=current_language,
label="Language / 语言",
interactive=True
)
with gr.Tabs():
with gr.Tab(get_text("tab_text_to_image")) as txt_tab:
with gr.Row():
with gr.Column():
txt_prompt = gr.Textbox(
label=get_text("text_prompt"),
value=get_text("text_prompt_placeholder"),
lines=3
)
with gr.Accordion(get_text("advanced_params"), open=False):
txt_cfg_scale = gr.Slider(
minimum=1.0, maximum=20.0, value=1.1, step=0.1,
label=get_text("cfg_scale"), info=get_text("cfg_scale_info")
)
txt_topk = gr.Slider(
minimum=100, maximum=2000, value=1000, step=50,
label=get_text("top_k"), info=get_text("top_k_info")
)
txt_topp = gr.Slider(
minimum=0.1, maximum=1.0, value=0.8, step=0.05,
label=get_text("top_p"), info=get_text("top_p_info")
)
txt_generate_btn = gr.Button(get_text("generate_image"), variant="primary")
with gr.Column():
txt_output_image = gr.Image(label=get_text("generated_image"))
txt_status = gr.Textbox(label=get_text("generation_status"), interactive=False)
with gr.Tab(get_text("tab_image_edit")) as edit_tab:
with gr.Row():
with gr.Column():
edit_input_image = gr.Image(
label=get_text("input_image"),
value=load_example_image('assets/editing.png')
)
edit_instruction = gr.Textbox(
label=get_text("edit_instruction"),
value=get_text("edit_instruction_placeholder"),
lines=2
)
with gr.Accordion(get_text("advanced_params"), open=False):
edit_cfg_scale = gr.Slider(
minimum=1.0, maximum=20.0, value=1.1, step=0.1,
label=get_text("cfg_scale")
)
edit_topk = gr.Slider(
minimum=100, maximum=2000, value=1000, step=50,
label=get_text("top_k")
)
edit_topp = gr.Slider(
minimum=0.1, maximum=1.0, value=0.8, step=0.05,
label=get_text("top_p")
)
edit_btn = gr.Button(get_text("edit_image"), variant="primary")
with gr.Column():
edit_output_image = gr.Image(label=get_text("edited_image"))
edit_status = gr.Textbox(label=get_text("edit_status"), interactive=False)
with gr.Tab(get_text("tab_image_understanding")) as understand_tab:
with gr.Row():
with gr.Column():
understand_input_image = gr.Image(
label=get_text("input_image"),
value=load_example_image('assets/understand.png')
)
understand_question = gr.Textbox(
label=get_text("question"),
value=get_text("question_placeholder"),
lines=2
)
with gr.Accordion(get_text("advanced_params"), open=False):
understand_max_tokens = gr.Slider(
minimum=64, maximum=1024, value=256, step=64,
label=get_text("max_generation_length")
)
understand_btn = gr.Button(get_text("understand_image"), variant="primary")
with gr.Column():
understand_output = gr.Textbox(
label=get_text("understanding_result"),
lines=15,
interactive=False
)
usage_md = gr.Markdown(
f"""
---
### {get_text("usage_instructions")}
{get_text("usage_step1")}
{get_text("usage_step2")}
{get_text("usage_step3")}
"""
)
txt_generate_btn.click(
fn=text_to_image,
inputs=[txt_prompt, txt_cfg_scale, txt_topk, txt_topp],
outputs=[txt_output_image, txt_status]
)
edit_btn.click(
fn=image_editing,
inputs=[edit_input_image, edit_instruction, edit_cfg_scale, edit_topk, edit_topp],
outputs=[edit_output_image, edit_status]
)
understand_btn.click(
fn=image_understanding,
inputs=[understand_input_image, understand_question, understand_max_tokens],
outputs=understand_output
)
language_dropdown.change(
fn=update_interface_language,
inputs=[language_dropdown],
outputs=[language_state, title_md, desc_md, txt_prompt, edit_instruction, understand_question, usage_md, txt_status]
)
return demo
demo = create_interface()
demo.launch(share=True, show_error=True)
|