File size: 29,654 Bytes
97bc03d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
import os
import math
import torch
import requests
from io import BytesIO
from PIL import Image
from tqdm import tqdm
import torch.nn.functional as F
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from torch.nn import CrossEntropyLoss
from transformers import (
    AutoConfig,
    AutoTokenizer,
    AutoModelForCausalLM,
    PreTrainedModel
)

from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor, Qwen2VLProcessor

from star.models.config import STARMultiModalConfig
from star.models.pixel_encoder.vq_model import VQ_Model
from star.models.adapter.projector import MlpProjector
from star.models.pixel_decoder.lumina2_decoder import Lumina2Decoder
from star.models.data_process_utils import get_full_transform, get_vq_transform, preprocess_image_gen
from star.models.rope_2d import get_rope_index_25

class STARMultiModal(PreTrainedModel):
    def __init__(self, config: STARMultiModalConfig, args=None, **kwargs):
        super().__init__(config)

        self.config = config
        self.args = args if args is not None else kwargs.get("args", None)

        # Pixel Encoder Generation
        model_name = config.pixel_encoder.model_name
        if model_name == "VQ_Model":
            self.pixel_encoder = VQ_Model(config.pixel_encoder)
        else:
            assert None, f"Unsupported {model_name}"
        self.pixel_encoder.eval()


        # Pixel Adapter Generation
        model_name = config.pixel_adapter.model_name
        if model_name == "MLP_GELU":
            self.pixel_adapter = MlpProjector(config.pixel_adapter)
        else:
            assert None, f"Unsupported {model_name}"

        # Pixel Ouput Head Generation
        self.pixel_output_head = torch.nn.Linear(config.pixel_output_head.n_embed, config.pixel_output_head.image_token_size)

        if getattr(args, "diffusion_as_decoder") and args.diffusion_as_decoder:
            self.diffusion_decoder = Lumina2Decoder(config.pixel_decoder, args)
        else:
            self.diffusion_decoder = None
            
        # Large Language Model
        model_name, model_path = config.language_model.model_name, config.language_model.model_path
        
        if model_name == "Qwen2.5-VL":
            self.llm = Qwen2_5_VLForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map="cuda")
            self.processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
            self.tokenizer = self.processor.tokenizer

            self.image_processor = self.processor.image_processor 
            self.image_processor.max_pixels = self.args.max_pixels
            self.image_processor.min_pixels = self.args.min_pixels
            self.image_processor.size["longest_edge"] = self.args.max_pixels
            self.image_processor.size["shortest_edge"] = self.args.min_pixels

            special_token_tags = ["<|vision_start|>", "<|vision_pad|>", "<|image_pad|>", "<|vision_end|>", "<|fim_pad|>"]
            self.special_tokens = {tag: self.tokenizer.vocab.get(tag, None) for tag in special_token_tags}
            
        else:
            assert None, f"unsupported {model_name}: {model_path}"
        self.llm.generation_config.pad_token_id = self.tokenizer.encode(self.tokenizer.pad_token)[0]

        if self.args.grad_ckpt:
            self.llm.gradient_checkpointing_enable()
            self.llm.visual.gradient_checkpointing_enable()


        stacked_ar_config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
        num_layers_to_extract = config.stacked_ar.num_layers
        stacked_ar_config.num_hidden_layers = num_layers_to_extract  
        
        self.stacked_ar = Qwen2_5_VLForConditionalGeneration(stacked_ar_config)
    
        temp_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2")
        total_layers = len(temp_model.model.layers)
        start_layer = max(0, total_layers - num_layers_to_extract)
        temp_model.model.layers = temp_model.model.layers[start_layer:]
        self.stacked_ar.load_state_dict(temp_model.state_dict(), strict=False)

        self.stacked_ar = self.stacked_ar.to("cuda")
        del self.stacked_ar.visual, self.stacked_ar.model.embed_tokens, self.stacked_ar.lm_head


    # For Inference Generation
    def generate_images(self, prompt, max_new_tokens=256, num_return_sequences=1, cfg_weight=5.0, topk_sample=1000, topp_sample=1.0, temperature=1.0, reasoning=False, return_dict=False):
        
        if reasoning:
            return self.generate_images_reasoning(prompt, max_new_tokens, num_return_sequences, cfg_weight, topk_sample, topp_sample, temperature, return_dict)
        
        messages = [{'role': 'user', 'content': prompt}]
        text = self.processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        text_token = self.tokenizer.encode(text)
        text_token = torch.tensor(text_token).long().to(self.device)
        
        keys = list(self.special_tokens.keys())
        start_token = (torch.ones(1) * self.special_tokens.get(keys[0])).long().to(self.device)
        
        input_ids = torch.cat((text_token, start_token)).long().to(self.device)
        tokens = torch.zeros((num_return_sequences*2, len(input_ids)), dtype=torch.int).cuda()
        assistant_tokens = input_ids[-4:]
        
        for i in range(num_return_sequences*2):
            tokens[i, :] = input_ids
            if i % 2 != 0:
                tokens[i, 1:-1] = self.special_tokens.get(keys[4])
                tokens[i, -4:] = assistant_tokens

        inputs_embeds = self.llm.model.embed_tokens(tokens).to(self.device)
        generated_tokens = torch.zeros((num_return_sequences, max_new_tokens), dtype=torch.int).cuda()

        for i in range(max_new_tokens):
            outputs = self.llm.model(
                    inputs_embeds=inputs_embeds,
                    use_cache=True, 
                    past_key_values=outputs.past_key_values if i != 0 else None,
                    output_hidden_states=True)
            last_hidden_states = outputs[0]

            output_states = self.stacked_ar.model(
                inputs_embeds=last_hidden_states,
                past_key_values=output_states.past_key_values if i != 0 else None,
                output_hidden_states=True,
                use_cache=True)

            last_hidden_states = output_states.hidden_states[-1]

            logits = self.pixel_output_head(last_hidden_states[:, -1, :])
            logit_cond = logits[0::2, :]
            logit_uncond = logits[1::2, :]
            logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond)
            next_token, _ = self.sample(logits, temperature=1.0, top_k=topk_sample, top_p=topp_sample)
            generated_tokens[:, i] = next_token.squeeze(dim=-1)
            next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
            
            vqgan_embeds = self.pixel_encoder.get_codebook_entry(next_token)
            img_embeds = self.pixel_adapter(vqgan_embeds)
            inputs_embeds = img_embeds.unsqueeze(dim=1)
        
        latent_size = int(math.sqrt(max_new_tokens))
        output_images = self.pixel_encoder.decode_code(generated_tokens.to(dtype=torch.int), shape=[num_return_sequences, self.pixel_encoder.config.codebook_embed_dim, latent_size, latent_size])
        output_images = output_images.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)

        diff_images = None
        if self.diffusion_decoder is not None:
            gen_image_embeds = self.pixel_encoder.get_codebook_entry(generated_tokens)

            if self.args.diffusion_resolution==512:
                self.diffusion_decoder.pipe.transformer.config.sample_size=16
            elif self.args.diffusion_resolution==1024:
                self.diffusion_decoder.pipe.transformer.config.sample_size=32
            diff_images = self.diffusion_decoder.pipe(
                    prompt,
                    num_inference_steps=40,
                    guidance_scale=4.5,
                    gen_image_embeds=gen_image_embeds, #gen_image_embeds,
                    control_emd="text",
                    ori_inp_way=self.diffusion_decoder.transformer.ori_inp_dit,
                    only_t2i="vqconcat",
                    img_guidance_scale=1.05,
                    height=self.args.diffusion_resolution,
                    width=self.args.diffusion_resolution
                ).images
        if return_dict:
            return {"output_images": output_images, "generated_tokens": generated_tokens, "diff_images": diff_images}
        return output_images

    def answer_text_qwen_vl(self, question, max_new_tokens=256, do_sample=True):
        
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": question},
                ],
            }
        ]

        # Preparation for inference
        text = self.processor.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True
        )
        # image_inputs, video_inputs = process_vision_info(messages)
        inputs = self.processor(
            text=[text],
            images=None,
            videos=None,
            padding=True,
            return_tensors="pt",
        )
        inputs = inputs.to(self.llm.device)
        
        # Inference: Generation of the output
        generated_ids = self.llm.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=do_sample)
        generated_ids_trimmed = [
            out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
        ]
        output_text = self.processor.batch_decode(
            generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
        )

        return output_text[0] if output_text else ""
    
    def generate_images_reasoning(self, prompt, max_new_tokens=256, num_return_sequences=1, cfg_weight=5.0, topk_sample=1000, topp_sample=1.0, temperature=1.0, return_dict=False):
        
        messages = [{'role': 'user', 'content': prompt}]
        text = self.processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        text_token = self.tokenizer.encode(text)
        text_token = torch.tensor(text_token).long().to(self.device)
        
        keys = list(self.special_tokens.keys())
        start_token = (torch.ones(1) * self.special_tokens.get(keys[0])).long().to(self.device)
        
        input_ids = torch.cat((text_token, start_token)).long().to(self.device)
        tokens = torch.zeros((num_return_sequences*2, len(input_ids)), dtype=torch.int).cuda()
        assistant_tokens = input_ids[-4:]
        
        for i in range(num_return_sequences*2):
            tokens[i, :] = input_ids
            if i % 2 != 0:
                tokens[i, 1:-1] = self.special_tokens.get(keys[4])
                tokens[i, -4:] = assistant_tokens

        generated_tokens = torch.zeros((num_return_sequences, max_new_tokens), dtype=torch.int).cuda()
        answer_tokens_list = self.answer_text_qwen_vl(prompt, do_sample=False)
        
        if answer_tokens_list:
            answer_tokens_list = self.tokenizer.encode(answer_tokens_list, add_special_tokens=False)
            answer_tokens = torch.tensor([answer_tokens_list], device=self.device)  # [1, seq_len]
            magic_prompt = " Ultra HD, 4K, cinematic composition"

            
            magic_prompt_tokens = self.tokenizer.encode(magic_prompt, add_special_tokens=False)
            magic_prompt_tensor = torch.tensor([magic_prompt_tokens], device=self.device)  # [1, magic_seq_len]
            
            answer_tokens = torch.cat([answer_tokens, magic_prompt_tensor], dim=1)  # [1, seq_len + magic_seq_len]
            answer_prompt = self.tokenizer.decode(answer_tokens[0]).split("assistant\n")[-1] #hjc see
            
            special_token = self.special_tokens.get(keys[4])
            special_token_tensor = torch.tensor([[special_token]], device=self.device)
            special_token_expanded = special_token_tensor.expand(-1, answer_tokens.size(1))
            
            answer_tokens_with_special = torch.cat([answer_tokens, special_token_expanded], dim=0)
            
            batch_size = tokens.size(0)  # num_return_sequences*2
            answer_tokens_expanded = answer_tokens_with_special.repeat(batch_size // 2, 1)
            
            input_tokens = torch.cat((tokens[:, :14], answer_tokens_expanded, tokens[:, -6:]), dim=1)
            
        else:
            input_tokens = tokens
            answer_prompt = None
        
        inputs_embeds = self.llm.model.embed_tokens(input_tokens).to(self.device)

        for i in range(max_new_tokens):
            outputs = self.llm.model(
                    inputs_embeds=inputs_embeds,
                    use_cache=True, 
                    past_key_values=outputs.past_key_values if i != 0 else None,
                    output_hidden_states=True)
            last_hidden_states = outputs[0]

            output_states = self.stacked_ar.model(
                inputs_embeds=last_hidden_states,
                past_key_values=output_states.past_key_values if i != 0 else None,
                output_hidden_states=True,
                use_cache=True)

            last_hidden_states = output_states.hidden_states[-1]

            logits = self.pixel_output_head(last_hidden_states[:, -1, :])
            logit_cond = logits[0::2, :]
            logit_uncond = logits[1::2, :]
            logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond)
            next_token, _ = self.sample(logits, temperature=1.0, top_k=topk_sample, top_p=topp_sample)
            generated_tokens[:, i] = next_token.squeeze(dim=-1)
            next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
            
            vqgan_embeds = self.pixel_encoder.get_codebook_entry(next_token)
            img_embeds = self.pixel_adapter(vqgan_embeds)
            inputs_embeds = img_embeds.unsqueeze(dim=1)
        
        latent_size = int(math.sqrt(max_new_tokens))
        output_images = self.pixel_encoder.decode_code(generated_tokens.to(dtype=torch.int), shape=[num_return_sequences, self.pixel_encoder.config.codebook_embed_dim, latent_size, latent_size])
        output_images = output_images.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)

        diff_images = None
        if self.diffusion_decoder is not None:
            gen_image_embeds = self.pixel_encoder.get_codebook_entry(generated_tokens)
            diff_prompt = answer_prompt if answer_prompt else prompt
            if self.args.diffusion_resolution==512:
                self.diffusion_decoder.pipe.transformer.config.sample_size=16
            elif self.args.diffusion_resolution==1024:
                self.diffusion_decoder.pipe.transformer.config.sample_size=32
            diff_images = self.diffusion_decoder.pipe(
                    diff_prompt,
                    num_inference_steps=40,
                    guidance_scale=4.5,
                    gen_image_embeds=gen_image_embeds, #gen_image_embeds,
                    control_emd="text",
                    ori_inp_way=self.diffusion_decoder.transformer.ori_inp_dit,
                    only_t2i="vqconcat",
                    img_guidance_scale=1.05,
                    height=self.args.diffusion_resolution,
                    width=self.args.diffusion_resolution
                ).images
        if return_dict:
            return {"output_images":output_images,"generated_tokens":generated_tokens,"diff_images":diff_images,"answer_prompt":answer_prompt}
        return output_images
    
    def generate_images_edit(self, image, prompt, max_new_tokens=256, num_return_sequences=1, cfg_weight=5.0, topk_sample=1000, topp_sample=1.0, temperature=1.0,return_dict=False):

        vq_image_transform = get_vq_transform(self.args)
        full_image_transform = get_full_transform(self.args)

        if isinstance(image, str):
            image = Image.open(image).convert('RGB')
        elif isinstance(image, list):
            image = [each_image.convert('RGB') for each_image in image]
        else:
            image = image.convert('RGB')

        messages = [{'role': 'user', 'content': prompt}]
        text = self.processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        text_token = self.tokenizer.encode(text)
        text_token = torch.tensor(text_token).long().to(self.device)
        
        keys = list(self.special_tokens.keys())
        start_token = (torch.ones(1) * self.special_tokens.get(keys[0])).long().to(self.device)
        user_prompt = "<|im_start|>user\n"
        user_prompt_token = self.tokenizer.encode(user_prompt, add_special_tokens=False)
        user_prompt_tensor = torch.tensor(user_prompt_token).long().to(self.device)
        windows = text_token.unfold(0, len(user_prompt_tensor), 1)
        matches = (windows == user_prompt_tensor).all(dim=1)
        image_position = torch.where(matches)[0][0].item() + len(user_prompt_tensor)

        input_ids = torch.cat((text_token, start_token)).long().to(self.device)
        tokens = torch.zeros((num_return_sequences*2, len(input_ids)), dtype=torch.int).cuda()
        assistant_tokens = input_ids[-4:]
        
        for i in range(num_return_sequences*2):
            tokens[i, :] = input_ids
            if i % 2 != 0:
                tokens[i, 1:-1] = self.special_tokens.get(keys[4])
                tokens[i, -4:] = assistant_tokens

        inputs_embeds = self.llm.model.embed_tokens(tokens).to(self.device)
        position_ids = None

        if image is not None:
            image_info = preprocess_image_gen(image, self.image_processor, vq_image_transform)
            image_embeds = self.llm.visual(image_info["pixel_values"].to(inputs_embeds.device,self.llm.visual.dtype), grid_thw=image_info["image_grid_thw"].to(inputs_embeds.device))
            image_embeds = image_embeds[None,:].repeat(2, 1, 1).to(inputs_embeds.device, inputs_embeds.dtype)
            
            vq_pixel_values = image_info["vq_pixel_values"].to(inputs_embeds.device)
            B = inputs_embeds.size(0)
            if len(vq_pixel_values.shape)==4:
                vq_pixel_values = vq_pixel_values[:,None]
            N = vq_pixel_values.size(1)
            _, _, [_, _, vq_indices] = self.pixel_encoder.encode(vq_pixel_values.flatten(0, 1).bfloat16())
            batch_size = vq_pixel_values.shape[0]
            vq_indices = vq_indices.reshape(batch_size, N, vq_indices.shape[-1])
            vqgan_dec_embeds = self.pixel_encoder.get_codebook_entry(vq_indices)
            vq_embeds = self.pixel_adapter(vqgan_dec_embeds)
            vq_embeds = vq_embeds.repeat(B, 1, 1, 1).to(inputs_embeds.device, inputs_embeds.dtype).flatten(1, 2)

            vision_start_embeds = self.llm.model.embed_tokens(torch.tensor(self.tokenizer.encode("<|vision_start|>")).long().to(self.device))
            vision_end_embeds = self.llm.model.embed_tokens(torch.tensor(self.tokenizer.encode("<|vision_end|>")).long().to(self.device))
            newline_embeds = self.llm.model.embed_tokens(torch.tensor(self.tokenizer.encode("\n")).long().to(self.device))
            vision_start_embeds = vision_start_embeds.unsqueeze(0).repeat(B, 1, 1)
            vision_end_embeds = vision_end_embeds.unsqueeze(0).repeat(B, 1, 1)
            newline_embeds = newline_embeds.unsqueeze(0).repeat(B, 1, 1)

            inputs_embeds = torch.cat((inputs_embeds[:, :image_position], 
                                       vision_start_embeds, vq_embeds, vision_end_embeds, 
                                       vision_start_embeds, image_embeds, vision_end_embeds, newline_embeds, 
                                       inputs_embeds[:, image_position:]), dim=1)
            
            SPECIAL_VQ_TOKEN = '<|vision_pad|>'    
            SPECIAL_VIT_TOKEN = '<|image_pad|>'
            SPECIAL_VQ_TOKEN_ID = self.tokenizer.encode(SPECIAL_VQ_TOKEN)[0]
            SPECIAL_VIT_TOKEN_ID = self.tokenizer.encode(SPECIAL_VIT_TOKEN)[0]
            input_ids_for_position = torch.cat([input_ids[:image_position], 
                                       torch.tensor(self.tokenizer.encode("<|vision_start|>")).to(vq_embeds.device), torch.full((vq_embeds.shape[-2],), SPECIAL_VQ_TOKEN_ID, device=vq_embeds.device), torch.tensor(self.tokenizer.encode("<|vision_end|>")).to(vq_embeds.device), 
                                       torch.tensor(self.tokenizer.encode("<|vision_start|>")).to(vq_embeds.device),  torch.full((image_embeds.shape[-2],), SPECIAL_VIT_TOKEN_ID, device=vq_embeds.device), torch.tensor(self.tokenizer.encode("<|vision_end|>")).to(vq_embeds.device), torch.tensor(self.tokenizer.encode("\n")).to(vq_embeds.device), 
                                       input_ids[image_position:],torch.full((vq_embeds.shape[-2],), SPECIAL_VQ_TOKEN_ID, device=vq_embeds.device)], dim=0)
            position_ids, _ = get_rope_index_25(
                self.image_processor.merge_size,
                input_ids_for_position[None],
                image_grid_thw=image_info["image_grid_thw"],
                video_grid_thw=None,
                second_per_grid_ts=None,
            )
            
        generated_tokens = torch.zeros((num_return_sequences, max_new_tokens), dtype=torch.int).cuda()
        
        for i in range(max_new_tokens):
            if i != 0:
                real_position = position_ids[:,:,outputs.past_key_values.seen_tokens:(outputs.past_key_values.seen_tokens+inputs_embeds.shape[1])].to(inputs_embeds.device)
            else:
                real_position = position_ids[:,:,:inputs_embeds.shape[1]].to(inputs_embeds.device)
            outputs = self.llm.model(
                    inputs_embeds=inputs_embeds,
                    use_cache=True, 
                    position_ids = real_position,
                    past_key_values=outputs.past_key_values if i != 0 else None,
                    output_hidden_states=True)
            last_hidden_states = outputs[0]

            output_states = self.stacked_ar.model(
                inputs_embeds=last_hidden_states,
                past_key_values=output_states.past_key_values if i != 0 else None,
                output_hidden_states=True,
                position_ids = real_position,
                use_cache=True)

            last_hidden_states = output_states.hidden_states[-1]

            logits = self.pixel_output_head(last_hidden_states[:, -1, :])
            logit_cond = logits[0::2, :]
            logit_uncond = logits[1::2, :]
            logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond)
            next_token, _ = self.sample(logits, temperature=1.0, top_k=topk_sample, top_p=topp_sample)
            generated_tokens[:, i] = next_token.squeeze(dim=-1)
            next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
            

            vqgan_embeds = self.pixel_encoder.get_codebook_entry(next_token)
            img_embeds = self.pixel_adapter(vqgan_embeds)
            inputs_embeds = img_embeds.unsqueeze(dim=1)
        
        latent_size = int(math.sqrt(max_new_tokens))
        output_images = self.pixel_encoder.decode_code(generated_tokens.to(dtype=torch.int), shape=[num_return_sequences, self.pixel_encoder.config.codebook_embed_dim, latent_size, latent_size])
        output_images = output_images.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
            
        diff_images = None
        if self.diffusion_decoder is not None:

            gen_image_embeds = self.pixel_encoder.get_codebook_entry(generated_tokens)
            
            if isinstance(image, list):
                processed_img = [full_image_transform(each_image) for each_image in image]
            else:
                processed_img = [full_image_transform(image)]
            if self.args.diffusion_resolution==512:
                self.diffusion_decoder.pipe.transformer.config.sample_size=16
            elif self.args.diffusion_resolution==1024:
                self.diffusion_decoder.pipe.transformer.config.sample_size=32
            diff_images = self.diffusion_decoder.pipe(
                    prompt,
                    num_inference_steps=50,
                    guidance_scale=3.0,
                    gen_image_embeds=gen_image_embeds, #gen_image_embeds,
                    control_emd="text",ori_inp_img=processed_img[0],ori_inp_way="seq",
                    only_t2i="vqconcat",img_guidance_scale=1.8,vq_guidance_scale=1,height=self.args.diffusion_resolution,width=self.args.diffusion_resolution
                ).images
        if return_dict:
            return {"output_images": output_images, "generated_tokens": None, "diff_images": diff_images}
        return None
    
    def sample(self, logits, temperature: float=1.0, top_k: int=0, top_p: float=1.0, sample_logits=True):        
        
        logits = logits / max(temperature, 1e-5)
        if top_k > 0 or top_p < 1.0:
            logits = self.top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
        probs = F.softmax(logits, dim=-1)
        if sample_logits:
            idx = torch.multinomial(probs, num_samples=1)
        else:
            _, idx = torch.topk(probs, k=1, dim=-1)
        return idx, probs

    def top_k_top_p_filtering(
        self,
        logits,
        top_k: int = 0,
        top_p: float = 1.0,
        filter_value: float = -float("Inf"),
        min_tokens_to_keep: int = 1,
    ):
        """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
        """
        if top_k > 0:
            top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1))  # Safety check
            # Remove all tokens with a probability less than the last token of the top-k
            indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
            logits[indices_to_remove] = filter_value

        if top_p < 1.0:
            sorted_logits, sorted_indices = torch.sort(logits, descending=True)
            cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

            # Remove tokens with cumulative probability above the threshold (token with 0 are kept)
            sorted_indices_to_remove = cumulative_probs > top_p
            if min_tokens_to_keep > 1:
                # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
                sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
            # Shift the indices to the right to keep also the first token above the threshold
            sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
            sorted_indices_to_remove[..., 0] = 0

            # scatter sorted tensors to original indexing
            indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
            logits[indices_to_remove] = filter_value
        return logits

    # For Inference Understand
    def preprocess_image(self, image):
        if image is None:
            return None
        if isinstance(image, str):
            if os.path.exists(image):
                pil_image = Image.open(image).convert('RGB')
            else:
                response = requests.get(image)
                if response.status_code == 200:
                    image_bytes = BytesIO(response.content)
                    pil_image = Image.open(image_bytes).convert('RGB')
                else:
                    raise ValueError(f"Failed to load image from url {image}")
        elif isinstance(image, Image.Image):
            pil_image = image.convert('RGB')
        elif isinstance(image, list):
            return self.preprocess_image(image[0])
        else:
            raise ValueError("Unsupported image type")
        
        return pil_image

    def inference_understand(self, image, question, max_new_tokens=256):
        pil_image = self.preprocess_image(image)

        messages = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "image",
                        "image": pil_image,
                    },
                    {"type": "text", "text": question},
                ],
            }
        ]

        from qwen_vl_utils import process_vision_info
        # Preparation for inference
        text = self.processor.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True
        )
        image_inputs, video_inputs = process_vision_info(messages)
        inputs = self.processor(
            text=[text],
            images=image_inputs,
            videos=video_inputs,
            padding=True,
            return_tensors="pt",
        )
        inputs = inputs.to(self.llm.device)

        # Inference: Generation of the output
        generated_ids = self.llm.generate(**inputs, max_new_tokens=max_new_tokens)
        generated_ids_trimmed = [
            out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
        ]
        output_text = self.processor.batch_decode(
            generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
        )

        return output_text[0] if output_text else ""