File size: 22,180 Bytes
97bc03d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# Copyright 2025 Alpha-VLLM Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from diffusers.models.transformers.transformer_lumina2 import *
from einops import repeat
from diffusers.models.embeddings import get_1d_rotary_pos_embed
import itertools

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class Lumina2CombinedTimestepCaptionEmbedding(nn.Module):
    def __init__(
        self,
        hidden_size: int = 4096,
        cap_feat_dim: int = 2048,
        frequency_embedding_size: int = 256,
        norm_eps: float = 1e-5,
    ) -> None:
        super().__init__()

        self.time_proj = Timesteps(
            num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0
        )

        self.timestep_embedder = TimestepEmbedding(
            in_channels=frequency_embedding_size, time_embed_dim=min(hidden_size, 1024)
        )

        self.caption_embedder = nn.Sequential(
            RMSNorm(cap_feat_dim, eps=norm_eps), nn.Linear(cap_feat_dim, hidden_size, bias=True)
        )

    def forward(
        self, hidden_states: torch.Tensor, timestep: torch.Tensor, encoder_hidden_states: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        timestep_proj = self.time_proj(timestep).type_as(hidden_states)
        time_embed = self.timestep_embedder(timestep_proj)
        caption_embed = self.caption_embedder(encoder_hidden_states)
        return time_embed, caption_embed


class Lumina2AttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
    used in the Lumina2Transformer2DModel model. It applies normalization and RoPE on query and key vectors.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
        base_sequence_length: Optional[int] = None,
    ) -> torch.Tensor:
        batch_size, sequence_length, _ = hidden_states.shape

        # Get Query-Key-Value Pair
        query = attn.to_q(hidden_states)
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query_dim = query.shape[-1]
        inner_dim = key.shape[-1]
        head_dim = query_dim // attn.heads
        dtype = query.dtype

        # Get key-value heads
        kv_heads = inner_dim // head_dim

        query = query.view(batch_size, -1, attn.heads, head_dim)
        key = key.view(batch_size, -1, kv_heads, head_dim)
        value = value.view(batch_size, -1, kv_heads, head_dim)

        # Apply Query-Key Norm if needed
        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if image_rotary_emb is not None:
            query = apply_rotary_emb(query, image_rotary_emb, use_real=False)
            key = apply_rotary_emb(key, image_rotary_emb, use_real=False)

        query, key = query.to(dtype), key.to(dtype)

        # Apply proportional attention if true
        if base_sequence_length is not None:
            softmax_scale = math.sqrt(math.log(sequence_length, base_sequence_length)) * attn.scale
        else:
            softmax_scale = attn.scale

        # perform Grouped-qurey Attention (GQA)
        n_rep = attn.heads // kv_heads
        if n_rep >= 1:
            key = key.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
            value = value.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)

        # scaled_dot_product_attention expects attention_mask shape to be
        # (batch, heads, source_length, target_length)
        if attention_mask is not None:
            attention_mask = attention_mask.bool().view(batch_size, 1, 1, -1)

        query = query.transpose(1, 2)
        key = key.transpose(1, 2)
        value = value.transpose(1, 2)

        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, scale=softmax_scale
        )
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.type_as(query)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        hidden_states = attn.to_out[1](hidden_states)
        return hidden_states


class Lumina2TransformerBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        num_kv_heads: int,
        multiple_of: int,
        ffn_dim_multiplier: float,
        norm_eps: float,
        modulation: bool = True,
    ) -> None:
        super().__init__()
        self.head_dim = dim // num_attention_heads
        self.dim = dim
        self.modulation = modulation

        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            dim_head=dim // num_attention_heads,
            qk_norm="rms_norm",
            heads=num_attention_heads,
            kv_heads=num_kv_heads,
            eps=1e-5,
            bias=False,
            out_bias=False,
            processor=Lumina2AttnProcessor2_0(),
        )

        self.feed_forward = LuminaFeedForward(
            dim=dim,
            inner_dim=4 * dim,
            multiple_of=multiple_of,
            ffn_dim_multiplier=ffn_dim_multiplier,
        )

        if modulation:
            self.norm1 = LuminaRMSNormZero(
                embedding_dim=dim,
                norm_eps=norm_eps,
                norm_elementwise_affine=True,
            )
        else:
            self.norm1 = RMSNorm(dim, eps=norm_eps)
        self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)

        self.norm2 = RMSNorm(dim, eps=norm_eps)
        self.ffn_norm2 = RMSNorm(dim, eps=norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        image_rotary_emb: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        if self.modulation:
            norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
            attn_output = self.attn(
                hidden_states=norm_hidden_states,
                encoder_hidden_states=norm_hidden_states,
                attention_mask=attention_mask,
                image_rotary_emb=image_rotary_emb,
            )
            hidden_states = hidden_states + gate_msa.unsqueeze(1).tanh() * self.norm2(attn_output)
            mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
            hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)
        else:
            norm_hidden_states = self.norm1(hidden_states)
            attn_output = self.attn(
                hidden_states=norm_hidden_states,
                encoder_hidden_states=norm_hidden_states,
                attention_mask=attention_mask,
                image_rotary_emb=image_rotary_emb,
            )
            hidden_states = hidden_states + self.norm2(attn_output)
            mlp_output = self.feed_forward(self.ffn_norm1(hidden_states))
            hidden_states = hidden_states + self.ffn_norm2(mlp_output)

        return hidden_states


class Lumina2RotaryPosEmbed(nn.Module):
    def __init__(self, theta: int, axes_dim: List[int], axes_lens: List[int] = (300, 512, 512), patch_size: int = 2):
        super().__init__()
        self.theta = theta
        self.axes_dim = axes_dim
        self.axes_lens = axes_lens
        self.patch_size = patch_size

        self.freqs_cis = self._precompute_freqs_cis(axes_dim, axes_lens, theta)

    def _precompute_freqs_cis(self, axes_dim: List[int], axes_lens: List[int], theta: int) -> List[torch.Tensor]:
        freqs_cis = []
        freqs_dtype = torch.float32 if torch.backends.mps.is_available() else torch.float64
        for i, (d, e) in enumerate(zip(axes_dim, axes_lens)):
            emb = get_1d_rotary_pos_embed(d, e, theta=self.theta, freqs_dtype=freqs_dtype)
            freqs_cis.append(emb)
        return freqs_cis

    def _get_freqs_cis(self, ids: torch.Tensor) -> torch.Tensor:
        device = ids.device
        if ids.device.type == "mps":
            ids = ids.to("cpu")

        result = []
        for i in range(len(self.axes_dim)):
            freqs = self.freqs_cis[i].to(ids.device)
            index = ids[:, :, i : i + 1].repeat(1, 1, freqs.shape[-1]).to(torch.int64)
            result.append(torch.gather(freqs.unsqueeze(0).repeat(index.shape[0], 1, 1), dim=1, index=index))
        return torch.cat(result, dim=-1).to(device)

    def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor):
        batch_size, channels, height, width = hidden_states.shape
        p = self.patch_size
        post_patch_height, post_patch_width = height // p, width // p
        image_seq_len = post_patch_height * post_patch_width
        device = hidden_states.device

        encoder_seq_len = attention_mask.shape[1]
        l_effective_cap_len = attention_mask.sum(dim=1).tolist()
        seq_lengths = [cap_seq_len + image_seq_len for cap_seq_len in l_effective_cap_len]
        max_seq_len = max(seq_lengths)

        # Create position IDs
        position_ids = torch.zeros(batch_size, max_seq_len, 3, dtype=torch.int32, device=device)

        for i, (cap_seq_len, seq_len) in enumerate(zip(l_effective_cap_len, seq_lengths)):
            # add caption position ids
            position_ids[i, :cap_seq_len, 0] = torch.arange(cap_seq_len, dtype=torch.int32, device=device)
            position_ids[i, cap_seq_len:seq_len, 0] = cap_seq_len

            # add image position ids
            row_ids = (
                torch.arange(post_patch_height, dtype=torch.int32, device=device)
                .view(-1, 1)
                .repeat(1, post_patch_width)
                .flatten()
            )
            col_ids = (
                torch.arange(post_patch_width, dtype=torch.int32, device=device)
                .view(1, -1)
                .repeat(post_patch_height, 1)
                .flatten()
            )
            position_ids[i, cap_seq_len:seq_len, 1] = row_ids
            position_ids[i, cap_seq_len:seq_len, 2] = col_ids

        # Get combined rotary embeddings
        freqs_cis = self._get_freqs_cis(position_ids)

        # create separate rotary embeddings for captions and images
        cap_freqs_cis = torch.zeros(
            batch_size, encoder_seq_len, freqs_cis.shape[-1], device=device, dtype=freqs_cis.dtype
        )
        img_freqs_cis = torch.zeros(
            batch_size, image_seq_len, freqs_cis.shape[-1], device=device, dtype=freqs_cis.dtype
        )

        for i, (cap_seq_len, seq_len) in enumerate(zip(l_effective_cap_len, seq_lengths)):
            cap_freqs_cis[i, :cap_seq_len] = freqs_cis[i, :cap_seq_len]
            img_freqs_cis[i, :image_seq_len] = freqs_cis[i, cap_seq_len:seq_len]

        # image patch embeddings
        hidden_states = (
            hidden_states.view(batch_size, channels, post_patch_height, p, post_patch_width, p)
            .permute(0, 2, 4, 3, 5, 1)
            .flatten(3)
            .flatten(1, 2)
        )

        return hidden_states, cap_freqs_cis, img_freqs_cis, freqs_cis, l_effective_cap_len, seq_lengths


class Lumina2Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
    r"""
    Lumina2NextDiT: Diffusion model with a Transformer backbone.

    Parameters:
        sample_size (`int`): The width of the latent images. This is fixed during training since
            it is used to learn a number of position embeddings.
        patch_size (`int`, *optional*, (`int`, *optional*, defaults to 2):
            The size of each patch in the image. This parameter defines the resolution of patches fed into the model.
        in_channels (`int`, *optional*, defaults to 4):
            The number of input channels for the model. Typically, this matches the number of channels in the input
            images.
        hidden_size (`int`, *optional*, defaults to 4096):
            The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
            hidden representations.
        num_layers (`int`, *optional*, default to 32):
            The number of layers in the model. This defines the depth of the neural network.
        num_attention_heads (`int`, *optional*, defaults to 32):
            The number of attention heads in each attention layer. This parameter specifies how many separate attention
            mechanisms are used.
        num_kv_heads (`int`, *optional*, defaults to 8):
            The number of key-value heads in the attention mechanism, if different from the number of attention heads.
            If None, it defaults to num_attention_heads.
        multiple_of (`int`, *optional*, defaults to 256):
            A factor that the hidden size should be a multiple of. This can help optimize certain hardware
            configurations.
        ffn_dim_multiplier (`float`, *optional*):
            A multiplier for the dimensionality of the feed-forward network. If None, it uses a default value based on
            the model configuration.
        norm_eps (`float`, *optional*, defaults to 1e-5):
            A small value added to the denominator for numerical stability in normalization layers.
        scaling_factor (`float`, *optional*, defaults to 1.0):
            A scaling factor applied to certain parameters or layers in the model. This can be used for adjusting the
            overall scale of the model's operations.
    """

    _supports_gradient_checkpointing = True
    _no_split_modules = ["Lumina2TransformerBlock"]
    _skip_layerwise_casting_patterns = ["x_embedder", "norm"]

    @register_to_config
    def __init__(
        self,
        sample_size: int = 128,
        patch_size: int = 2,
        in_channels: int = 16,
        out_channels: Optional[int] = None,
        hidden_size: int = 2304,
        num_layers: int = 26,
        num_refiner_layers: int = 2,
        num_attention_heads: int = 24,
        num_kv_heads: int = 8,
        multiple_of: int = 256,
        ffn_dim_multiplier: Optional[float] = None,
        norm_eps: float = 1e-5,
        scaling_factor: float = 1.0,
        axes_dim_rope: Tuple[int, int, int] = (32, 32, 32),
        axes_lens: Tuple[int, int, int] = (300, 512, 512),
        cap_feat_dim: int = 1024,
    ) -> None:
        super().__init__()
        self.out_channels = out_channels or in_channels

        # 1. Positional, patch & conditional embeddings
        self.rope_embedder = Lumina2RotaryPosEmbed(
            theta=10000, axes_dim=axes_dim_rope, axes_lens=axes_lens, patch_size=patch_size
        )

        self.x_embedder = nn.Linear(in_features=patch_size * patch_size * in_channels, out_features=hidden_size)

        self.time_caption_embed = Lumina2CombinedTimestepCaptionEmbedding(
            hidden_size=hidden_size, cap_feat_dim=cap_feat_dim, norm_eps=norm_eps
        )

        # 2. Noise and context refinement blocks
        self.noise_refiner = nn.ModuleList(
            [
                Lumina2TransformerBlock(
                    hidden_size,
                    num_attention_heads,
                    num_kv_heads,
                    multiple_of,
                    ffn_dim_multiplier,
                    norm_eps,
                    modulation=True,
                )
                for _ in range(num_refiner_layers)
            ]
        )

        self.context_refiner = nn.ModuleList(
            [
                Lumina2TransformerBlock(
                    hidden_size,
                    num_attention_heads,
                    num_kv_heads,
                    multiple_of,
                    ffn_dim_multiplier,
                    norm_eps,
                    modulation=False,
                )
                for _ in range(num_refiner_layers)
            ]
        )
        self.ori_inp_dit = "none"
        self.ori_inp_refiner = None

        # 3. Transformer blocks
        self.layers = nn.ModuleList(
            [
                Lumina2TransformerBlock(
                    hidden_size,
                    num_attention_heads,
                    num_kv_heads,
                    multiple_of,
                    ffn_dim_multiplier,
                    norm_eps,
                    modulation=True,
                )
                for _ in range(num_layers)
            ]
        )

        # 4. Output norm & projection
        self.norm_out = LuminaLayerNormContinuous(
            embedding_dim=hidden_size,
            conditioning_embedding_dim=min(hidden_size, 1024),
            elementwise_affine=False,
            eps=1e-6,
            bias=True,
            out_dim=patch_size * patch_size * self.out_channels,
        )

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        timestep: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        encoder_attention_mask: torch.Tensor,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
    ) -> Union[torch.Tensor, Transformer2DModelOutput]:
        if attention_kwargs is not None:
            attention_kwargs = attention_kwargs.copy()
            lora_scale = attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
                )

        # 1. Condition, positional & patch embedding
        batch_size, _, height, width = hidden_states.shape
        
        temb, encoder_hidden_states = self.time_caption_embed(hidden_states, timestep, encoder_hidden_states)

        (
            hidden_states,
            context_rotary_emb,
            noise_rotary_emb,
            rotary_emb,
            encoder_seq_lengths,
            seq_lengths,
        ) = self.rope_embedder(hidden_states, encoder_attention_mask)

        hidden_states = self.x_embedder(hidden_states)

        # 2. Context & noise refinement
        for layer in self.context_refiner:
            encoder_hidden_states = layer(encoder_hidden_states, encoder_attention_mask, context_rotary_emb)

        for layer in self.noise_refiner:
            hidden_states = layer(hidden_states, None, noise_rotary_emb, temb)
        
        if self.ori_inp_dit!="none" and self.ori_inp_refiner is not None:
            single_img_length = hidden_states.shape[1]//2
            initial_part = hidden_states[:, :single_img_length]
            refined_part = self.ori_inp_refiner(hidden_states[:, single_img_length:])
            updated_hidden_states = torch.cat((initial_part, refined_part), dim=1)
            hidden_states = updated_hidden_states  

        # 3. Joint Transformer blocks
        max_seq_len = max(seq_lengths)
        use_mask = len(set(seq_lengths)) > 1

        attention_mask = hidden_states.new_zeros(batch_size, max_seq_len, dtype=torch.bool)
        joint_hidden_states = hidden_states.new_zeros(batch_size, max_seq_len, self.config.hidden_size)
        for i, (encoder_seq_len, seq_len) in enumerate(zip(encoder_seq_lengths, seq_lengths)):
            attention_mask[i, :seq_len] = True
            joint_hidden_states[i, :encoder_seq_len] = encoder_hidden_states[i, :encoder_seq_len]
            joint_hidden_states[i, encoder_seq_len:seq_len] = hidden_states[i]

        hidden_states = joint_hidden_states

        for layer in self.layers:
            if torch.is_grad_enabled() and self.gradient_checkpointing:
                hidden_states = self._gradient_checkpointing_func(
                    layer, hidden_states, attention_mask if use_mask else None, rotary_emb, temb
                )
            else:
                hidden_states = layer(hidden_states, attention_mask if use_mask else None, rotary_emb, temb)

        # 4. Output norm & projection
        hidden_states = self.norm_out(hidden_states, temb)

        # 5. Unpatchify
        p = self.config.patch_size
        output = []
        for i, (encoder_seq_len, seq_len) in enumerate(zip(encoder_seq_lengths, seq_lengths)):
            output.append(
                hidden_states[i][encoder_seq_len:seq_len]
                .view(height // p, width // p, p, p, self.out_channels)
                .permute(4, 0, 2, 1, 3)
                .flatten(3, 4)
                .flatten(1, 2)
            )
        output = torch.stack(output, dim=0)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (output,)
        return Transformer2DModelOutput(sample=output)