File size: 22,180 Bytes
97bc03d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
# Copyright 2025 Alpha-VLLM Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from diffusers.models.transformers.transformer_lumina2 import *
from einops import repeat
from diffusers.models.embeddings import get_1d_rotary_pos_embed
import itertools
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class Lumina2CombinedTimestepCaptionEmbedding(nn.Module):
def __init__(
self,
hidden_size: int = 4096,
cap_feat_dim: int = 2048,
frequency_embedding_size: int = 256,
norm_eps: float = 1e-5,
) -> None:
super().__init__()
self.time_proj = Timesteps(
num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0
)
self.timestep_embedder = TimestepEmbedding(
in_channels=frequency_embedding_size, time_embed_dim=min(hidden_size, 1024)
)
self.caption_embedder = nn.Sequential(
RMSNorm(cap_feat_dim, eps=norm_eps), nn.Linear(cap_feat_dim, hidden_size, bias=True)
)
def forward(
self, hidden_states: torch.Tensor, timestep: torch.Tensor, encoder_hidden_states: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
timestep_proj = self.time_proj(timestep).type_as(hidden_states)
time_embed = self.timestep_embedder(timestep_proj)
caption_embed = self.caption_embedder(encoder_hidden_states)
return time_embed, caption_embed
class Lumina2AttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
used in the Lumina2Transformer2DModel model. It applies normalization and RoPE on query and key vectors.
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
base_sequence_length: Optional[int] = None,
) -> torch.Tensor:
batch_size, sequence_length, _ = hidden_states.shape
# Get Query-Key-Value Pair
query = attn.to_q(hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query_dim = query.shape[-1]
inner_dim = key.shape[-1]
head_dim = query_dim // attn.heads
dtype = query.dtype
# Get key-value heads
kv_heads = inner_dim // head_dim
query = query.view(batch_size, -1, attn.heads, head_dim)
key = key.view(batch_size, -1, kv_heads, head_dim)
value = value.view(batch_size, -1, kv_heads, head_dim)
# Apply Query-Key Norm if needed
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb, use_real=False)
key = apply_rotary_emb(key, image_rotary_emb, use_real=False)
query, key = query.to(dtype), key.to(dtype)
# Apply proportional attention if true
if base_sequence_length is not None:
softmax_scale = math.sqrt(math.log(sequence_length, base_sequence_length)) * attn.scale
else:
softmax_scale = attn.scale
# perform Grouped-qurey Attention (GQA)
n_rep = attn.heads // kv_heads
if n_rep >= 1:
key = key.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
value = value.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
if attention_mask is not None:
attention_mask = attention_mask.bool().view(batch_size, 1, 1, -1)
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, scale=softmax_scale
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.type_as(query)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class Lumina2TransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
num_kv_heads: int,
multiple_of: int,
ffn_dim_multiplier: float,
norm_eps: float,
modulation: bool = True,
) -> None:
super().__init__()
self.head_dim = dim // num_attention_heads
self.dim = dim
self.modulation = modulation
self.attn = Attention(
query_dim=dim,
cross_attention_dim=None,
dim_head=dim // num_attention_heads,
qk_norm="rms_norm",
heads=num_attention_heads,
kv_heads=num_kv_heads,
eps=1e-5,
bias=False,
out_bias=False,
processor=Lumina2AttnProcessor2_0(),
)
self.feed_forward = LuminaFeedForward(
dim=dim,
inner_dim=4 * dim,
multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier,
)
if modulation:
self.norm1 = LuminaRMSNormZero(
embedding_dim=dim,
norm_eps=norm_eps,
norm_elementwise_affine=True,
)
else:
self.norm1 = RMSNorm(dim, eps=norm_eps)
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)
self.norm2 = RMSNorm(dim, eps=norm_eps)
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
image_rotary_emb: torch.Tensor,
temb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if self.modulation:
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
attn_output = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_hidden_states,
attention_mask=attention_mask,
image_rotary_emb=image_rotary_emb,
)
hidden_states = hidden_states + gate_msa.unsqueeze(1).tanh() * self.norm2(attn_output)
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)
else:
norm_hidden_states = self.norm1(hidden_states)
attn_output = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_hidden_states,
attention_mask=attention_mask,
image_rotary_emb=image_rotary_emb,
)
hidden_states = hidden_states + self.norm2(attn_output)
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states))
hidden_states = hidden_states + self.ffn_norm2(mlp_output)
return hidden_states
class Lumina2RotaryPosEmbed(nn.Module):
def __init__(self, theta: int, axes_dim: List[int], axes_lens: List[int] = (300, 512, 512), patch_size: int = 2):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim
self.axes_lens = axes_lens
self.patch_size = patch_size
self.freqs_cis = self._precompute_freqs_cis(axes_dim, axes_lens, theta)
def _precompute_freqs_cis(self, axes_dim: List[int], axes_lens: List[int], theta: int) -> List[torch.Tensor]:
freqs_cis = []
freqs_dtype = torch.float32 if torch.backends.mps.is_available() else torch.float64
for i, (d, e) in enumerate(zip(axes_dim, axes_lens)):
emb = get_1d_rotary_pos_embed(d, e, theta=self.theta, freqs_dtype=freqs_dtype)
freqs_cis.append(emb)
return freqs_cis
def _get_freqs_cis(self, ids: torch.Tensor) -> torch.Tensor:
device = ids.device
if ids.device.type == "mps":
ids = ids.to("cpu")
result = []
for i in range(len(self.axes_dim)):
freqs = self.freqs_cis[i].to(ids.device)
index = ids[:, :, i : i + 1].repeat(1, 1, freqs.shape[-1]).to(torch.int64)
result.append(torch.gather(freqs.unsqueeze(0).repeat(index.shape[0], 1, 1), dim=1, index=index))
return torch.cat(result, dim=-1).to(device)
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor):
batch_size, channels, height, width = hidden_states.shape
p = self.patch_size
post_patch_height, post_patch_width = height // p, width // p
image_seq_len = post_patch_height * post_patch_width
device = hidden_states.device
encoder_seq_len = attention_mask.shape[1]
l_effective_cap_len = attention_mask.sum(dim=1).tolist()
seq_lengths = [cap_seq_len + image_seq_len for cap_seq_len in l_effective_cap_len]
max_seq_len = max(seq_lengths)
# Create position IDs
position_ids = torch.zeros(batch_size, max_seq_len, 3, dtype=torch.int32, device=device)
for i, (cap_seq_len, seq_len) in enumerate(zip(l_effective_cap_len, seq_lengths)):
# add caption position ids
position_ids[i, :cap_seq_len, 0] = torch.arange(cap_seq_len, dtype=torch.int32, device=device)
position_ids[i, cap_seq_len:seq_len, 0] = cap_seq_len
# add image position ids
row_ids = (
torch.arange(post_patch_height, dtype=torch.int32, device=device)
.view(-1, 1)
.repeat(1, post_patch_width)
.flatten()
)
col_ids = (
torch.arange(post_patch_width, dtype=torch.int32, device=device)
.view(1, -1)
.repeat(post_patch_height, 1)
.flatten()
)
position_ids[i, cap_seq_len:seq_len, 1] = row_ids
position_ids[i, cap_seq_len:seq_len, 2] = col_ids
# Get combined rotary embeddings
freqs_cis = self._get_freqs_cis(position_ids)
# create separate rotary embeddings for captions and images
cap_freqs_cis = torch.zeros(
batch_size, encoder_seq_len, freqs_cis.shape[-1], device=device, dtype=freqs_cis.dtype
)
img_freqs_cis = torch.zeros(
batch_size, image_seq_len, freqs_cis.shape[-1], device=device, dtype=freqs_cis.dtype
)
for i, (cap_seq_len, seq_len) in enumerate(zip(l_effective_cap_len, seq_lengths)):
cap_freqs_cis[i, :cap_seq_len] = freqs_cis[i, :cap_seq_len]
img_freqs_cis[i, :image_seq_len] = freqs_cis[i, cap_seq_len:seq_len]
# image patch embeddings
hidden_states = (
hidden_states.view(batch_size, channels, post_patch_height, p, post_patch_width, p)
.permute(0, 2, 4, 3, 5, 1)
.flatten(3)
.flatten(1, 2)
)
return hidden_states, cap_freqs_cis, img_freqs_cis, freqs_cis, l_effective_cap_len, seq_lengths
class Lumina2Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
r"""
Lumina2NextDiT: Diffusion model with a Transformer backbone.
Parameters:
sample_size (`int`): The width of the latent images. This is fixed during training since
it is used to learn a number of position embeddings.
patch_size (`int`, *optional*, (`int`, *optional*, defaults to 2):
The size of each patch in the image. This parameter defines the resolution of patches fed into the model.
in_channels (`int`, *optional*, defaults to 4):
The number of input channels for the model. Typically, this matches the number of channels in the input
images.
hidden_size (`int`, *optional*, defaults to 4096):
The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
hidden representations.
num_layers (`int`, *optional*, default to 32):
The number of layers in the model. This defines the depth of the neural network.
num_attention_heads (`int`, *optional*, defaults to 32):
The number of attention heads in each attention layer. This parameter specifies how many separate attention
mechanisms are used.
num_kv_heads (`int`, *optional*, defaults to 8):
The number of key-value heads in the attention mechanism, if different from the number of attention heads.
If None, it defaults to num_attention_heads.
multiple_of (`int`, *optional*, defaults to 256):
A factor that the hidden size should be a multiple of. This can help optimize certain hardware
configurations.
ffn_dim_multiplier (`float`, *optional*):
A multiplier for the dimensionality of the feed-forward network. If None, it uses a default value based on
the model configuration.
norm_eps (`float`, *optional*, defaults to 1e-5):
A small value added to the denominator for numerical stability in normalization layers.
scaling_factor (`float`, *optional*, defaults to 1.0):
A scaling factor applied to certain parameters or layers in the model. This can be used for adjusting the
overall scale of the model's operations.
"""
_supports_gradient_checkpointing = True
_no_split_modules = ["Lumina2TransformerBlock"]
_skip_layerwise_casting_patterns = ["x_embedder", "norm"]
@register_to_config
def __init__(
self,
sample_size: int = 128,
patch_size: int = 2,
in_channels: int = 16,
out_channels: Optional[int] = None,
hidden_size: int = 2304,
num_layers: int = 26,
num_refiner_layers: int = 2,
num_attention_heads: int = 24,
num_kv_heads: int = 8,
multiple_of: int = 256,
ffn_dim_multiplier: Optional[float] = None,
norm_eps: float = 1e-5,
scaling_factor: float = 1.0,
axes_dim_rope: Tuple[int, int, int] = (32, 32, 32),
axes_lens: Tuple[int, int, int] = (300, 512, 512),
cap_feat_dim: int = 1024,
) -> None:
super().__init__()
self.out_channels = out_channels or in_channels
# 1. Positional, patch & conditional embeddings
self.rope_embedder = Lumina2RotaryPosEmbed(
theta=10000, axes_dim=axes_dim_rope, axes_lens=axes_lens, patch_size=patch_size
)
self.x_embedder = nn.Linear(in_features=patch_size * patch_size * in_channels, out_features=hidden_size)
self.time_caption_embed = Lumina2CombinedTimestepCaptionEmbedding(
hidden_size=hidden_size, cap_feat_dim=cap_feat_dim, norm_eps=norm_eps
)
# 2. Noise and context refinement blocks
self.noise_refiner = nn.ModuleList(
[
Lumina2TransformerBlock(
hidden_size,
num_attention_heads,
num_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
modulation=True,
)
for _ in range(num_refiner_layers)
]
)
self.context_refiner = nn.ModuleList(
[
Lumina2TransformerBlock(
hidden_size,
num_attention_heads,
num_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
modulation=False,
)
for _ in range(num_refiner_layers)
]
)
self.ori_inp_dit = "none"
self.ori_inp_refiner = None
# 3. Transformer blocks
self.layers = nn.ModuleList(
[
Lumina2TransformerBlock(
hidden_size,
num_attention_heads,
num_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
modulation=True,
)
for _ in range(num_layers)
]
)
# 4. Output norm & projection
self.norm_out = LuminaLayerNormContinuous(
embedding_dim=hidden_size,
conditioning_embedding_dim=min(hidden_size, 1024),
elementwise_affine=False,
eps=1e-6,
bias=True,
out_dim=patch_size * patch_size * self.out_channels,
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
timestep: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_attention_mask: torch.Tensor,
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[torch.Tensor, Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
# 1. Condition, positional & patch embedding
batch_size, _, height, width = hidden_states.shape
temb, encoder_hidden_states = self.time_caption_embed(hidden_states, timestep, encoder_hidden_states)
(
hidden_states,
context_rotary_emb,
noise_rotary_emb,
rotary_emb,
encoder_seq_lengths,
seq_lengths,
) = self.rope_embedder(hidden_states, encoder_attention_mask)
hidden_states = self.x_embedder(hidden_states)
# 2. Context & noise refinement
for layer in self.context_refiner:
encoder_hidden_states = layer(encoder_hidden_states, encoder_attention_mask, context_rotary_emb)
for layer in self.noise_refiner:
hidden_states = layer(hidden_states, None, noise_rotary_emb, temb)
if self.ori_inp_dit!="none" and self.ori_inp_refiner is not None:
single_img_length = hidden_states.shape[1]//2
initial_part = hidden_states[:, :single_img_length]
refined_part = self.ori_inp_refiner(hidden_states[:, single_img_length:])
updated_hidden_states = torch.cat((initial_part, refined_part), dim=1)
hidden_states = updated_hidden_states
# 3. Joint Transformer blocks
max_seq_len = max(seq_lengths)
use_mask = len(set(seq_lengths)) > 1
attention_mask = hidden_states.new_zeros(batch_size, max_seq_len, dtype=torch.bool)
joint_hidden_states = hidden_states.new_zeros(batch_size, max_seq_len, self.config.hidden_size)
for i, (encoder_seq_len, seq_len) in enumerate(zip(encoder_seq_lengths, seq_lengths)):
attention_mask[i, :seq_len] = True
joint_hidden_states[i, :encoder_seq_len] = encoder_hidden_states[i, :encoder_seq_len]
joint_hidden_states[i, encoder_seq_len:seq_len] = hidden_states[i]
hidden_states = joint_hidden_states
for layer in self.layers:
if torch.is_grad_enabled() and self.gradient_checkpointing:
hidden_states = self._gradient_checkpointing_func(
layer, hidden_states, attention_mask if use_mask else None, rotary_emb, temb
)
else:
hidden_states = layer(hidden_states, attention_mask if use_mask else None, rotary_emb, temb)
# 4. Output norm & projection
hidden_states = self.norm_out(hidden_states, temb)
# 5. Unpatchify
p = self.config.patch_size
output = []
for i, (encoder_seq_len, seq_len) in enumerate(zip(encoder_seq_lengths, seq_lengths)):
output.append(
hidden_states[i][encoder_seq_len:seq_len]
.view(height // p, width // p, p, p, self.out_channels)
.permute(4, 0, 2, 1, 3)
.flatten(3, 4)
.flatten(1, 2)
)
output = torch.stack(output, dim=0)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output) |