STAR / star /models /pixel_decoder /lumina2_decoder.py
MM-MVR's picture
Upload files
97bc03d verified
raw
history blame
28.6 kB
import torch
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, Lumina2Pipeline
from transformers import AutoTokenizer, Gemma2Model
import copy
import torch.nn as nn
import torch.nn.functional as F
from diffusers.training_utils import (
cast_training_params,
compute_density_for_timestep_sampling,
compute_loss_weighting_for_sd3,
free_memory,
)
from diffusers.pipelines.lumina2.pipeline_lumina2 import *
class Lumina2Decoder(torch.nn.Module):
def __init__(self, config, args):
super().__init__()
self.diffusion_model_path = config.model_path
if not hasattr(args, "revision"):
args.revision = None
if not hasattr(args, "variant"):
args.variant = None
self.tokenizer_one = AutoTokenizer.from_pretrained(
self.diffusion_model_path,
subfolder="tokenizer",
revision=args.revision,
)
self.noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
self.diffusion_model_path, subfolder="scheduler"
)
self.noise_scheduler_copy = copy.deepcopy(self.noise_scheduler)
self.text_encoder_one = Gemma2Model.from_pretrained(
self.diffusion_model_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
)
self.text_encoding_pipeline = Lumina2Pipeline.from_pretrained(
self.diffusion_model_path,
vae=None,
transformer=None,
text_encoder=self.text_encoder_one,
tokenizer=self.tokenizer_one,
)
self.vae = AutoencoderKL.from_pretrained(
self.diffusion_model_path,
subfolder="vae",
revision=args.revision,
variant=args.variant,
)
if args.ori_inp_dit=="seq":
from star.models.pixel_decoder.transformer_lumina2_seq import Lumina2Transformer2DModel
elif args.ori_inp_dit=="ref":
from star.models.pixel_decoder.transformer_lumina2 import Lumina2Transformer2DModel
self.transformer = Lumina2Transformer2DModel.from_pretrained(
self.diffusion_model_path, subfolder="transformer", revision=args.revision, variant=args.variant
)
vq_dim = 512
patch_size = self.transformer.config.patch_size
in_channels = vq_dim + self.transformer.config.in_channels # 48 for mask
out_channels = self.transformer.x_embedder.out_features
load_num_channel = self.transformer.config.in_channels * patch_size * patch_size
self.transformer.register_to_config(in_channels=in_channels)
transformer = self.transformer
with torch.no_grad():
new_proj = nn.Linear(
in_channels * patch_size * patch_size, out_channels, bias=True
)
new_proj.weight.zero_()
new_proj = new_proj.to(transformer.x_embedder.weight.dtype)
new_proj.weight[:, :load_num_channel].copy_(transformer.x_embedder.weight)
new_proj.bias.copy_(transformer.x_embedder.bias)
transformer.x_embedder = new_proj
self.ori_inp_dit = args.ori_inp_dit
if args.ori_inp_dit=="seq":
refiner_channels = transformer.noise_refiner[-1].dim
with torch.no_grad():
vae2cond_proj1 = nn.Linear(refiner_channels, refiner_channels, bias=True)
vae2cond_act = nn.GELU(approximate='tanh')
vae2cond_proj2 = nn.Linear(refiner_channels, refiner_channels, bias=False)
vae2cond_proj2.weight.zero_()
ori_inp_refiner = nn.Sequential(
vae2cond_proj1,
vae2cond_act,
vae2cond_proj2
)
transformer.ori_inp_refiner = ori_inp_refiner
transformer.ori_inp_dit = self.ori_inp_dit
elif args.ori_inp_dit=="ref":
transformer.initialize_ref_weights()
transformer.ori_inp_dit = self.ori_inp_dit
transformer.requires_grad_(True)
if args.grad_ckpt and args.diffusion_resolution==1024:
transformer.gradient_checkpointing = args.grad_ckpt
transformer.enable_gradient_checkpointing()
self.vae.requires_grad_(False)
self.vae.to(dtype=torch.float32)
self.args = args
self.pipe = Lumina2InstructPix2PixPipeline.from_pretrained(self.diffusion_model_path,
transformer=transformer,
text_encoder=self.text_encoder_one,
vae=self.vae,
torch_dtype=torch.bfloat16)
with torch.no_grad():
_, _, self.uncond_prompt_embeds, self.uncond_prompt_attention_mask = self.text_encoding_pipeline.encode_prompt(
"",
max_sequence_length=self.args.max_diff_seq_length,
)
def compute_text_embeddings(self,prompt, text_encoding_pipeline):
with torch.no_grad():
prompt_embeds, prompt_attention_mask, _, _ = text_encoding_pipeline.encode_prompt(
prompt,
max_sequence_length=self.args.max_diff_seq_length,
)
return prompt_embeds, prompt_attention_mask
def get_sigmas(self, timesteps, n_dim=4, dtype=torch.float32):
sigmas = self.noise_scheduler_copy.sigmas.to(dtype=dtype)
schedule_timesteps = self.noise_scheduler_copy.timesteps.to(device=timesteps.device)
timesteps = timesteps
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
def forward(self, batch_gpu,batch, image_embeds):
args = self.args
pixel_values = batch_gpu["full_pixel_values"].to(dtype=self.vae.dtype) #aux_image
data_type = "t2i"
if len(pixel_values.shape)==5:
bs,num_img,c,h,w = pixel_values.shape
if num_img==2:
data_type = "edit"
pixel_values_ori_img = pixel_values[:,0]
pixel_values = pixel_values[:,-1]
pixel_values = F.interpolate(pixel_values, size=(self.args.diffusion_resolution, self.args.diffusion_resolution), mode='bilinear',align_corners=False)
if data_type=="edit" and self.ori_inp_dit!="none":
pixel_values_ori_img = F.interpolate(pixel_values_ori_img, size=(self.args.diffusion_resolution, self.args.diffusion_resolution), mode='bilinear', align_corners=False)
prompt = batch["prompts"]
bs,_,_,_ = pixel_values.shape
image_prompt_embeds = None
image_embeds_2d = image_embeds.reshape(bs, 24, 24, image_embeds.shape[-1]).permute(0, 3, 1, 2)
image_embeds_2d = F.interpolate(image_embeds_2d, size=(args.diffusion_resolution//8, args.diffusion_resolution//8), mode='bilinear', align_corners=False)
control_emd = args.control_emd
prompt_embeds, prompt_attention_mask = self.compute_text_embeddings(prompt, self.text_encoding_pipeline)
if control_emd=="mix":
prompt_embeds=torch.cat([prompt_embeds, image_prompt_embeds], dim=1) #use mix
elif control_emd=="null":
prompt_embeds = torch.zeros_like(prompt_embeds)
prompt_attention_mask = torch.ones_like(prompt_attention_mask)
elif control_emd=="text":
pass
elif control_emd=="vit" or control_emd=="vq" or control_emd=="vqvae" or control_emd=="vqconcat" or control_emd=="vqconcatvit":
prompt_embeds=image_prompt_embeds
latents = self.vae.encode(pixel_values).latent_dist.sample()
latents = (latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
latents = latents.to(dtype=image_embeds.dtype)
latents_ori_img = torch.zeros_like(latents)
if data_type=="edit" and self.ori_inp_dit!="none":
latents_ori_img = self.vae.encode(pixel_values_ori_img).latent_dist.sample()
latents_ori_img = (latents_ori_img - self.vae.config.shift_factor) * self.vae.config.scaling_factor
latents_ori_img = latents_ori_img.to(dtype=image_embeds.dtype)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
# for weighting schemes where we sample timesteps non-uniformly
u = compute_density_for_timestep_sampling(
weighting_scheme=args.weighting_scheme,
batch_size=bsz,
logit_mean=args.logit_mean,
logit_std=args.logit_std,
mode_scale=args.mode_scale,
)
indices = (u * self.noise_scheduler_copy.config.num_train_timesteps).long()
timesteps = self.noise_scheduler_copy.timesteps[indices].to(device=latents.device)
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
sigmas = self.get_sigmas(timesteps, n_dim=latents.ndim, dtype=latents.dtype).to(device=noise.device)
#noisy_model_input = (1.0 - sigmas) * noise + sigmas * latents
noisy_model_input = sigmas * noise + (1-sigmas) * latents
#noisy_model_input + (1-sigmas)*(latents - noise) = latents
# Get the additional image embedding for conditioning.
# Instead of getting a diagonal Gaussian here, we simply take the mode.
original_image_embeds = image_embeds_2d
if args.conditioning_dropout_prob is not None:
random_p = torch.rand(bsz, device=latents.device)
# Sample masks for the edit prompts.
prompt_mask = random_p < 2 * args.uncondition_prob
prompt_mask = prompt_mask.reshape(bsz, 1, 1)
# Final text conditioning.
#prompt_embeds = torch.where(prompt_mask, torch.zeros_like(prompt_embeds), prompt_embeds)
prompt_embeds = torch.where(prompt_mask, self.uncond_prompt_embeds.repeat(prompt_embeds.shape[0],1,1).to(prompt_embeds.device), prompt_embeds)
prompt_attention_mask = torch.where(prompt_mask[:,0], self.uncond_prompt_attention_mask.repeat(prompt_embeds.shape[0],1).to(prompt_embeds.device), prompt_attention_mask)
# Sample masks for the original images.
#random_p_vq = torch.rand(bsz, device=latents.device)
image_mask_dtype = original_image_embeds.dtype
image_mask = 1 - (
(random_p <= args.conditioning_dropout_prob).to(image_mask_dtype)
)
image_mask = image_mask.reshape(bsz, 1, 1, 1)
if data_type=="edit":
image_mask=0
# Final image conditioning.
original_image_embeds = image_mask * original_image_embeds
ori_latent_mask = 1 - (
(random_p >= args.uncondition_prob).to(image_mask_dtype)
* (random_p < 3 * args.uncondition_prob).to(image_mask_dtype)
)
ori_latent_mask = ori_latent_mask.reshape(bsz, 1, 1, 1)
latents_ori_img = ori_latent_mask * latents_ori_img
concatenated_noisy_latents = torch.cat([noisy_model_input, original_image_embeds], dim=1)
ref_image_hidden_states = None
if self.ori_inp_dit=="dim":
concatenated_noisy_latents = torch.cat([concatenated_noisy_latents, latents_ori_img], dim=1)
elif self.ori_inp_dit=="seq":
latents_ori_img = torch.cat([latents_ori_img, original_image_embeds], dim=1)
concatenated_noisy_latents = torch.cat([concatenated_noisy_latents, latents_ori_img], dim=2)
elif self.ori_inp_dit=="ref":
latents_ori_img = torch.cat([latents_ori_img, original_image_embeds], dim=1)
ref_image_hidden_states = latents_ori_img[:,None]
# Predict the noise residual
# scale the timesteps (reversal not needed as we used a reverse lerp above already)
timesteps = 1-timesteps / self.noise_scheduler.config.num_train_timesteps #timesteps / self.noise_scheduler.config.num_train_timesteps
model_pred = self.transformer(
hidden_states=concatenated_noisy_latents,
timestep=timesteps,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
# ref_image_hidden_states = ref_image_hidden_states,
return_dict=False,
)[0]
if self.ori_inp_dit=="seq":
model_pred = model_pred[:, :, :args.diffusion_resolution//8, :]
weighting = compute_loss_weighting_for_sd3(weighting_scheme=args.weighting_scheme, sigmas=sigmas)
target = latents - noise
# Conditioning dropout to support classifier-free guidance during inference. For more details
# check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800.
# Concatenate the `original_image_embeds` with the `noisy_latents`.
# Get the target for loss depending on the prediction type
loss = torch.mean(
(weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1),
1,
)
loss = loss.mean()
loss_value = loss.item()
return loss
class Lumina2InstructPix2PixPipeline(Lumina2Pipeline):
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
width: Optional[int] = None,
height: Optional[int] = None,
num_inference_steps: int = 30,
guidance_scale: float = 4.0,
negative_prompt: Union[str, List[str]] = None,
sigmas: List[float] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
system_prompt: Optional[str] = None,
cfg_trunc_ratio=[0.0,1.0],
cfg_normalization: bool = False,
max_sequence_length: int = 256,
control_emd="text",
img_cfg_trunc_ratio =[0.0,1.0],
gen_image_embeds=None,only_t2i="vqconcat",image_prompt_embeds=None,ori_inp_img=None,img_guidance_scale=1.5,vq_guidance_scale=0,ori_inp_way="none",
) -> Union[ImagePipelineOutput, Tuple]:
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
num_images_per_prompt = gen_image_embeds.shape[0] if gen_image_embeds is not None else image_prompt_embeds.shape[0]
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
height,
width,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_attention_mask=negative_prompt_attention_mask,
max_sequence_length=max_sequence_length,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# 3. Encode input prompt
(
prompt_embeds,
prompt_attention_mask,
negative_prompt_embeds,
negative_prompt_attention_mask,
) = self.encode_prompt(
prompt,
self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_attention_mask=negative_prompt_attention_mask,
max_sequence_length=max_sequence_length,
system_prompt=system_prompt,
)
if gen_image_embeds is not None:
image_embeds_8=gen_image_embeds
if control_emd=="text":
pass
elif control_emd=="null":
prompt_embeds = torch.zeros_like(prompt_embeds)
prompt_attention_mask = torch.zeros_like(prompt_attention_mask)
negative_prompt_embeds = prompt_embeds
negative_prompt_attention_mask = prompt_attention_mask
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds,negative_prompt_embeds, prompt_embeds], dim=0)
prompt_attention_mask = torch.cat([negative_prompt_attention_mask,negative_prompt_attention_mask, prompt_attention_mask], dim=0)
# 4. Prepare latents.
latent_channels = self.vae.config.latent_channels #self.transformer.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
latent_channels,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
latents_ori_img = torch.zeros_like(latents)
if ori_inp_img is not None and ori_inp_way !="none":
#fuck = torch.load(ori_inp_img).to(latents.device)
ori_inp_img = F.interpolate(ori_inp_img[None].to(latents.device,latents.dtype), size=(height,width), mode='bilinear',align_corners=False)
latents_ori_img = self.vae.encode(ori_inp_img).latent_dist.sample()
latents_ori_img = (latents_ori_img- self.vae.config.shift_factor) * self.vae.config.scaling_factor
latents_ori_img = latents_ori_img.to(dtype=latents.dtype)
if ori_inp_way !="none":
negative_latents_ori_img = torch.zeros_like(latents_ori_img).to(prompt_embeds.dtype)
latents_ori_img = torch.cat([negative_latents_ori_img,latents_ori_img, latents_ori_img], dim=0) if self.do_classifier_free_guidance else latents_ori_img
vq_in_edit = False
if only_t2i==True:
image_latents = torch.zeros_like(latents)[:,:8]
elif only_t2i=="vqconcat":
image_embeds_2d = image_embeds_8.reshape(batch_size* num_images_per_prompt,24,24,image_embeds_8.shape[-1]).permute(0,3,1,2)
if ori_inp_img is not None and image_embeds_8.mean()!=0:
vq_in_edit = True
image_vq_latents = F.interpolate(image_embeds_2d, size=(height//8,width//8), mode='bilinear',align_corners=False).to(latents.device,latents.dtype)
image_latents = torch.zeros_like(image_vq_latents)
else:
image_latents = F.interpolate(image_embeds_2d, size=(height//8,width//8), mode='bilinear',align_corners=False).to(latents.device,latents.dtype)
negative_image_latents = torch.zeros_like(image_latents).to(prompt_embeds.dtype)
image_latents = torch.cat([negative_image_latents,image_latents, image_latents], dim=0) if self.do_classifier_free_guidance else image_latents
# 5. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.get("base_image_seq_len", 256),
self.scheduler.config.get("max_image_seq_len", 4096),
self.scheduler.config.get("base_shift", 0.5),
self.scheduler.config.get("max_shift", 1.15),
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
mu=mu,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
self.scheduler.sigmas=self.scheduler.sigmas.to(latents.dtype) #hjc find bug
# 6. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# compute whether apply classifier-free truncation on this timestep
do_classifier_free_truncation = not ((i + 1) / num_inference_steps > cfg_trunc_ratio[0] and (i + 1) / num_inference_steps < cfg_trunc_ratio[1])
img_do_classifier_free_truncation = not ((i + 1) / num_inference_steps > img_cfg_trunc_ratio[0] and (i + 1) / num_inference_steps < img_cfg_trunc_ratio[1])
# reverse the timestep since Lumina uses t=0 as the noise and t=1 as the image
current_timestep = 1 - t / self.scheduler.config.num_train_timesteps
latent_model_input = torch.cat([latents] * 3) if self.do_classifier_free_guidance else latents
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
current_timestep = current_timestep.expand(latent_model_input.shape[0])
latent_model_input = torch.cat([latent_model_input, image_latents], dim=1)
ref_image_hidden_states = None
if ori_inp_way=="seq":
latents_ori_img_cat = torch.cat([latents_ori_img, image_latents], dim=1)
latent_model_input = torch.cat([latent_model_input, latents_ori_img_cat], dim=2)
elif ori_inp_way=="ref":
latents_ori_img_cat = torch.cat([latents_ori_img, image_latents], dim=1)
ref_image_hidden_states = latents_ori_img_cat[:,None]
if ori_inp_way=="ref":
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=current_timestep,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
return_dict=False,ref_image_hidden_states=ref_image_hidden_states,
attention_kwargs=self.attention_kwargs,
)[0]
else:
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=current_timestep,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
return_dict=False,
attention_kwargs=self.attention_kwargs,
)[0]
if ori_inp_way=="seq":
noise_pred = noise_pred[:,:,:height//8,:]
if vq_in_edit:
latent_model_vq_input = torch.cat([latents, image_vq_latents], dim=1)
if ori_inp_way=="seq":
latents_ori_img_cat_vq = torch.cat([torch.zeros_like(latents), image_vq_latents], dim=1)
latent_model_vq_input = torch.cat([latent_model_vq_input, latents_ori_img_cat_vq], dim=2)
noise_vq_pred = self.transformer(
hidden_states=latent_model_vq_input,
timestep=current_timestep[-1:],
encoder_hidden_states=prompt_embeds[-1:],
encoder_attention_mask=prompt_attention_mask[-1:],
return_dict=False,
attention_kwargs=self.attention_kwargs,
)[0]
if ori_inp_way=="seq":
noise_vq_pred = noise_vq_pred[:,:,:height//8,:]
# perform normalization-based guidance scale on a truncated timestep interval
if self.do_classifier_free_guidance:
noise_pred_uncond,noise_pred_img, noise_pred_text = noise_pred.chunk(3)
if not do_classifier_free_truncation and not img_do_classifier_free_truncation:
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_img)+ img_guidance_scale * (noise_pred_img - noise_pred_uncond)
elif not do_classifier_free_truncation and img_do_classifier_free_truncation:
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_img)+ 1 * (noise_pred_img - noise_pred_uncond)
elif do_classifier_free_truncation and not img_do_classifier_free_truncation:
noise_pred = noise_pred_uncond + 1 * (noise_pred_text - noise_pred_img)+ img_guidance_scale * (noise_pred_img - noise_pred_uncond)
else:
noise_pred = noise_pred_text
if vq_in_edit:
noise_pred = noise_pred +vq_guidance_scale*(noise_vq_pred-noise_pred_uncond)
# apply normalization after classifier-free guidance
if cfg_normalization:
cond_norm = torch.norm(noise_pred_text, dim=-1, keepdim=True)
noise_norm = torch.norm(noise_pred, dim=-1, keepdim=True)
noise_pred = noise_pred * (cond_norm / noise_norm)
else:
noise_pred = noise_pred
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
noise_pred = -noise_pred
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
if not output_type == "latent":
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
else:
image = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)