# Copyright 2025 Alpha-VLLM Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Any, Dict, List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from diffusers.models.transformers.transformer_lumina2 import * from einops import repeat from diffusers.models.embeddings import get_1d_rotary_pos_embed import itertools logger = logging.get_logger(__name__) # pylint: disable=invalid-name class Lumina2CombinedTimestepCaptionEmbedding(nn.Module): def __init__( self, hidden_size: int = 4096, cap_feat_dim: int = 2048, frequency_embedding_size: int = 256, norm_eps: float = 1e-5, ) -> None: super().__init__() self.time_proj = Timesteps( num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0 ) self.timestep_embedder = TimestepEmbedding( in_channels=frequency_embedding_size, time_embed_dim=min(hidden_size, 1024) ) self.caption_embedder = nn.Sequential( RMSNorm(cap_feat_dim, eps=norm_eps), nn.Linear(cap_feat_dim, hidden_size, bias=True) ) def forward( self, hidden_states: torch.Tensor, timestep: torch.Tensor, encoder_hidden_states: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: timestep_proj = self.time_proj(timestep).type_as(hidden_states[0]) time_embed = self.timestep_embedder(timestep_proj) caption_embed = self.caption_embedder(encoder_hidden_states) return time_embed, caption_embed class Lumina2AttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the Lumina2Transformer2DModel model. It applies normalization and RoPE on query and key vectors. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, base_sequence_length: Optional[int] = None, ) -> torch.Tensor: batch_size, sequence_length, _ = hidden_states.shape # Get Query-Key-Value Pair query = attn.to_q(hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query_dim = query.shape[-1] inner_dim = key.shape[-1] head_dim = query_dim // attn.heads dtype = query.dtype # Get key-value heads kv_heads = inner_dim // head_dim query = query.view(batch_size, -1, attn.heads, head_dim) key = key.view(batch_size, -1, kv_heads, head_dim) value = value.view(batch_size, -1, kv_heads, head_dim) # Apply Query-Key Norm if needed if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb, use_real=False) key = apply_rotary_emb(key, image_rotary_emb, use_real=False) query, key = query.to(dtype), key.to(dtype) # Apply proportional attention if true if base_sequence_length is not None: softmax_scale = math.sqrt(math.log(sequence_length, base_sequence_length)) * attn.scale else: softmax_scale = attn.scale # perform Grouped-qurey Attention (GQA) n_rep = attn.heads // kv_heads if n_rep >= 1: key = key.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) value = value.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) if attention_mask is not None: attention_mask = attention_mask.bool().view(batch_size, 1, 1, -1) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, scale=softmax_scale ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.type_as(query) # linear proj hidden_states = attn.to_out[0](hidden_states) hidden_states = attn.to_out[1](hidden_states) return hidden_states class Lumina2TransformerBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, num_kv_heads: int, multiple_of: int, ffn_dim_multiplier: float, norm_eps: float, modulation: bool = True, ) -> None: super().__init__() self.head_dim = dim // num_attention_heads self.dim = dim self.modulation = modulation self.attn = Attention( query_dim=dim, cross_attention_dim=None, dim_head=dim // num_attention_heads, qk_norm="rms_norm", heads=num_attention_heads, kv_heads=num_kv_heads, eps=1e-5, bias=False, out_bias=False, processor=Lumina2AttnProcessor2_0(), ) self.feed_forward = LuminaFeedForward( dim=dim, inner_dim=4 * dim, multiple_of=multiple_of, ffn_dim_multiplier=ffn_dim_multiplier, ) if modulation: self.norm1 = LuminaRMSNormZero( embedding_dim=dim, norm_eps=norm_eps, norm_elementwise_affine=True, ) else: self.norm1 = RMSNorm(dim, eps=norm_eps) self.ffn_norm1 = RMSNorm(dim, eps=norm_eps) self.norm2 = RMSNorm(dim, eps=norm_eps) self.ffn_norm2 = RMSNorm(dim, eps=norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, image_rotary_emb: torch.Tensor, temb: Optional[torch.Tensor] = None, ) -> torch.Tensor: if self.modulation: norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb) attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_hidden_states, attention_mask=attention_mask, image_rotary_emb=image_rotary_emb, ) hidden_states = hidden_states + gate_msa.unsqueeze(1).tanh() * self.norm2(attn_output) mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1))) hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output) else: norm_hidden_states = self.norm1(hidden_states) attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_hidden_states, attention_mask=attention_mask, image_rotary_emb=image_rotary_emb, ) hidden_states = hidden_states + self.norm2(attn_output) mlp_output = self.feed_forward(self.ffn_norm1(hidden_states)) hidden_states = hidden_states + self.ffn_norm2(mlp_output) return hidden_states class Lumina2RotaryPosEmbed(nn.Module): def __init__(self, theta: int, axes_dim: List[int], axes_lens: List[int] = (300, 512, 512), patch_size: int = 2): super().__init__() self.theta = theta self.axes_dim = axes_dim self.axes_lens = axes_lens self.patch_size = patch_size self.freqs_cis = self._precompute_freqs_cis(axes_dim, axes_lens, theta) def _precompute_freqs_cis(self, axes_dim: List[int], axes_lens: List[int], theta: int) -> List[torch.Tensor]: freqs_cis = [] freqs_dtype = torch.float32 if torch.backends.mps.is_available() else torch.float64 for i, (d, e) in enumerate(zip(axes_dim, axes_lens)): emb = get_1d_rotary_pos_embed(d, e, theta=self.theta, freqs_dtype=freqs_dtype) freqs_cis.append(emb) return freqs_cis def _get_freqs_cis(self, ids: torch.Tensor) -> torch.Tensor: device = ids.device if ids.device.type == "mps": ids = ids.to("cpu") result = [] for i in range(len(self.axes_dim)): freqs = self.freqs_cis[i].to(ids.device) index = ids[:, :, i : i + 1].repeat(1, 1, freqs.shape[-1]).to(torch.int64) result.append(torch.gather(freqs.unsqueeze(0).repeat(index.shape[0], 1, 1), dim=1, index=index)) return torch.cat(result, dim=-1).to(device) def forward( self, attention_mask, l_effective_ref_img_len, l_effective_img_len, ref_img_sizes, img_sizes, device ): batch_size = len(attention_mask) p = self.patch_size encoder_seq_len = attention_mask.shape[1] l_effective_cap_len = attention_mask.sum(dim=1).tolist() seq_lengths = [cap_len + sum(ref_img_len) + img_len for cap_len, ref_img_len, img_len in zip(l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len)] max_seq_len = max(seq_lengths) max_ref_img_len = max([sum(ref_img_len) for ref_img_len in l_effective_ref_img_len]) max_img_len = max(l_effective_img_len) # Create position IDs position_ids = torch.zeros(batch_size, max_seq_len, 3, dtype=torch.int32, device=device) for i, (cap_seq_len, seq_len) in enumerate(zip(l_effective_cap_len, seq_lengths)): # add text position ids position_ids[i, :cap_seq_len] = repeat(torch.arange(cap_seq_len, dtype=torch.int32, device=device), "l -> l 3") pe_shift = cap_seq_len pe_shift_len = cap_seq_len if ref_img_sizes[i] is not None: for ref_img_size, ref_img_len in zip(ref_img_sizes[i], l_effective_ref_img_len[i]): H, W = ref_img_size ref_H_tokens, ref_W_tokens = H // p, W // p assert ref_H_tokens * ref_W_tokens == ref_img_len # add image position ids row_ids = repeat(torch.arange(ref_H_tokens, dtype=torch.int32, device=device), "h -> h w", w=ref_W_tokens).flatten() col_ids = repeat(torch.arange(ref_W_tokens, dtype=torch.int32, device=device), "w -> h w", h=ref_H_tokens).flatten() position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 0] = pe_shift position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 1] = row_ids position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 2] = col_ids pe_shift += max(ref_H_tokens, ref_W_tokens) pe_shift_len += ref_img_len H, W = img_sizes[i] H_tokens, W_tokens = H // p, W // p assert H_tokens * W_tokens == l_effective_img_len[i] row_ids = repeat(torch.arange(H_tokens, dtype=torch.int32, device=device), "h -> h w", w=W_tokens).flatten() col_ids = repeat(torch.arange(W_tokens, dtype=torch.int32, device=device), "w -> h w", h=H_tokens).flatten() assert pe_shift_len + l_effective_img_len[i] == seq_len position_ids[i, pe_shift_len: seq_len, 0] = pe_shift position_ids[i, pe_shift_len: seq_len, 1] = row_ids position_ids[i, pe_shift_len: seq_len, 2] = col_ids # Get combined rotary embeddings freqs_cis = self._get_freqs_cis(position_ids) # create separate rotary embeddings for captions and images cap_freqs_cis = torch.zeros( batch_size, encoder_seq_len, freqs_cis.shape[-1], device=device, dtype=freqs_cis.dtype ) ref_img_freqs_cis = torch.zeros( batch_size, max_ref_img_len, freqs_cis.shape[-1], device=device, dtype=freqs_cis.dtype ) img_freqs_cis = torch.zeros( batch_size, max_img_len, freqs_cis.shape[-1], device=device, dtype=freqs_cis.dtype ) for i, (cap_seq_len, ref_img_len, img_len, seq_len) in enumerate(zip(l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len, seq_lengths)): cap_freqs_cis[i, :cap_seq_len] = freqs_cis[i, :cap_seq_len] ref_img_freqs_cis[i, :sum(ref_img_len)] = freqs_cis[i, cap_seq_len:cap_seq_len + sum(ref_img_len)] img_freqs_cis[i, :img_len] = freqs_cis[i, cap_seq_len + sum(ref_img_len):cap_seq_len + sum(ref_img_len) + img_len] return ( cap_freqs_cis, ref_img_freqs_cis, img_freqs_cis, freqs_cis, l_effective_cap_len, seq_lengths, ) class Lumina2Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): r""" Lumina2NextDiT: Diffusion model with a Transformer backbone. Parameters: sample_size (`int`): The width of the latent images. This is fixed during training since it is used to learn a number of position embeddings. patch_size (`int`, *optional*, (`int`, *optional*, defaults to 2): The size of each patch in the image. This parameter defines the resolution of patches fed into the model. in_channels (`int`, *optional*, defaults to 4): The number of input channels for the model. Typically, this matches the number of channels in the input images. hidden_size (`int`, *optional*, defaults to 4096): The dimensionality of the hidden layers in the model. This parameter determines the width of the model's hidden representations. num_layers (`int`, *optional*, default to 32): The number of layers in the model. This defines the depth of the neural network. num_attention_heads (`int`, *optional*, defaults to 32): The number of attention heads in each attention layer. This parameter specifies how many separate attention mechanisms are used. num_kv_heads (`int`, *optional*, defaults to 8): The number of key-value heads in the attention mechanism, if different from the number of attention heads. If None, it defaults to num_attention_heads. multiple_of (`int`, *optional*, defaults to 256): A factor that the hidden size should be a multiple of. This can help optimize certain hardware configurations. ffn_dim_multiplier (`float`, *optional*): A multiplier for the dimensionality of the feed-forward network. If None, it uses a default value based on the model configuration. norm_eps (`float`, *optional*, defaults to 1e-5): A small value added to the denominator for numerical stability in normalization layers. scaling_factor (`float`, *optional*, defaults to 1.0): A scaling factor applied to certain parameters or layers in the model. This can be used for adjusting the overall scale of the model's operations. """ _supports_gradient_checkpointing = True _no_split_modules = ["Lumina2TransformerBlock"] _skip_layerwise_casting_patterns = ["x_embedder", "norm"] @register_to_config def __init__( self, sample_size: int = 128, patch_size: int = 2, in_channels: int = 16, out_channels: Optional[int] = None, hidden_size: int = 2304, num_layers: int = 26, num_refiner_layers: int = 2, num_attention_heads: int = 24, num_kv_heads: int = 8, multiple_of: int = 256, ffn_dim_multiplier: Optional[float] = None, norm_eps: float = 1e-5, scaling_factor: float = 1.0, axes_dim_rope: Tuple[int, int, int] = (32, 32, 32), axes_lens: Tuple[int, int, int] = (300, 512, 512), cap_feat_dim: int = 1024, ) -> None: super().__init__() self.out_channels = out_channels or in_channels # 1. Positional, patch & conditional embeddings self.rope_embedder = Lumina2RotaryPosEmbed( theta=10000, axes_dim=axes_dim_rope, axes_lens=axes_lens, patch_size=patch_size ) self.x_embedder = nn.Linear(in_features=patch_size * patch_size * in_channels, out_features=hidden_size) self.time_caption_embed = Lumina2CombinedTimestepCaptionEmbedding( hidden_size=hidden_size, cap_feat_dim=cap_feat_dim, norm_eps=norm_eps ) # 2. Noise and context refinement blocks self.noise_refiner = nn.ModuleList( [ Lumina2TransformerBlock( hidden_size, num_attention_heads, num_kv_heads, multiple_of, ffn_dim_multiplier, norm_eps, modulation=True, ) for _ in range(num_refiner_layers) ] ) self.context_refiner = nn.ModuleList( [ Lumina2TransformerBlock( hidden_size, num_attention_heads, num_kv_heads, multiple_of, ffn_dim_multiplier, norm_eps, modulation=False, ) for _ in range(num_refiner_layers) ] ) # 3. Transformer blocks self.layers = nn.ModuleList( [ Lumina2TransformerBlock( hidden_size, num_attention_heads, num_kv_heads, multiple_of, ffn_dim_multiplier, norm_eps, modulation=True, ) for _ in range(num_layers) ] ) # 4. Output norm & projection self.norm_out = LuminaLayerNormContinuous( embedding_dim=hidden_size, conditioning_embedding_dim=min(hidden_size, 1024), elementwise_affine=False, eps=1e-6, bias=True, out_dim=patch_size * patch_size * self.out_channels, ) self.gradient_checkpointing = False self.args_dict = {"patch_size":patch_size,"in_channels":in_channels,"hidden_size":hidden_size, "num_attention_heads":num_attention_heads,"num_kv_heads":num_kv_heads, "multiple_of":multiple_of,"ffn_dim_multiplier":ffn_dim_multiplier, "norm_eps":norm_eps,"num_refiner_layers":num_refiner_layers} def initialize_ref_weights(self) -> None: """ Initialize the weights of the model. Uses Xavier uniform initialization for linear layers. """ patch_size, in_channels, hidden_size, num_attention_heads, num_kv_heads, multiple_of, ffn_dim_multiplier, norm_eps, num_refiner_layers = \ (self.args_dict[k] for k in ["patch_size","in_channels","hidden_size","num_attention_heads","num_kv_heads", "multiple_of","ffn_dim_multiplier","norm_eps","num_refiner_layers"]) with torch.no_grad(): self.ref_image_patch_embedder = nn.Linear( in_features=self.x_embedder.in_features, out_features=hidden_size, ) self.ref_image_refiner = nn.ModuleList([ Lumina2TransformerBlock( hidden_size, num_attention_heads, num_kv_heads, multiple_of, ffn_dim_multiplier, norm_eps, modulation=True ) for _ in range(num_refiner_layers) ]) nn.init.xavier_uniform_(self.ref_image_patch_embedder.weight) nn.init.constant_(self.ref_image_patch_embedder.bias, 0.0) # Add learnable embeddings to distinguish different images self.image_index_embedding = nn.Parameter(torch.randn(5, hidden_size)) # support max 5 ref images nn.init.normal_(self.image_index_embedding, std=0.02) def img_patch_embed_and_refine( self, hidden_states, ref_image_hidden_states, padded_img_mask, padded_ref_img_mask, noise_rotary_emb, ref_img_rotary_emb, l_effective_ref_img_len, l_effective_img_len, temb ): batch_size = len(hidden_states) max_combined_img_len = max([img_len + sum(ref_img_len) for img_len, ref_img_len in zip(l_effective_img_len, l_effective_ref_img_len)]) hidden_states = self.x_embedder(hidden_states) ref_image_hidden_states = self.ref_image_patch_embedder(ref_image_hidden_states) for i in range(batch_size): shift = 0 for j, ref_img_len in enumerate(l_effective_ref_img_len[i]): ref_image_hidden_states[i, shift:shift + ref_img_len, :] = ref_image_hidden_states[i, shift:shift + ref_img_len, :] + self.image_index_embedding[j] shift += ref_img_len for layer in self.noise_refiner: hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb) flat_l_effective_ref_img_len = list(itertools.chain(*l_effective_ref_img_len)) num_ref_images = len(flat_l_effective_ref_img_len) max_ref_img_len = max(flat_l_effective_ref_img_len) batch_ref_img_mask = ref_image_hidden_states.new_zeros(num_ref_images, max_ref_img_len, dtype=torch.bool) batch_ref_image_hidden_states = ref_image_hidden_states.new_zeros(num_ref_images, max_ref_img_len, self.config.hidden_size) batch_ref_img_rotary_emb = hidden_states.new_zeros(num_ref_images, max_ref_img_len, ref_img_rotary_emb.shape[-1], dtype=ref_img_rotary_emb.dtype) batch_temb = temb.new_zeros(num_ref_images, *temb.shape[1:], dtype=temb.dtype) # sequence of ref imgs to batch idx = 0 for i in range(batch_size): shift = 0 for ref_img_len in l_effective_ref_img_len[i]: batch_ref_img_mask[idx, :ref_img_len] = True batch_ref_image_hidden_states[idx, :ref_img_len] = ref_image_hidden_states[i, shift:shift + ref_img_len] batch_ref_img_rotary_emb[idx, :ref_img_len] = ref_img_rotary_emb[i, shift:shift + ref_img_len] batch_temb[idx] = temb[i] shift += ref_img_len idx += 1 # refine ref imgs separately for layer in self.ref_image_refiner: batch_ref_image_hidden_states = layer(batch_ref_image_hidden_states, batch_ref_img_mask, batch_ref_img_rotary_emb, batch_temb) # batch of ref imgs to sequence idx = 0 for i in range(batch_size): shift = 0 for ref_img_len in l_effective_ref_img_len[i]: ref_image_hidden_states[i, shift:shift + ref_img_len] = batch_ref_image_hidden_states[idx, :ref_img_len] shift += ref_img_len idx += 1 combined_img_hidden_states = hidden_states.new_zeros(batch_size, max_combined_img_len, self.config.hidden_size) for i, (ref_img_len, img_len) in enumerate(zip(l_effective_ref_img_len, l_effective_img_len)): combined_img_hidden_states[i, :sum(ref_img_len)] = ref_image_hidden_states[i, :sum(ref_img_len)] combined_img_hidden_states[i, sum(ref_img_len):sum(ref_img_len) + img_len] = hidden_states[i, :img_len] return combined_img_hidden_states def flat_and_pad_to_seq(self, hidden_states, ref_image_hidden_states): batch_size = len(hidden_states) p = self.config.patch_size device = hidden_states[0].device img_sizes = [(img.size(1), img.size(2)) for img in hidden_states] l_effective_img_len = [(H // p) * (W // p) for (H, W) in img_sizes] if ref_image_hidden_states is not None: ref_img_sizes = [[(img.size(1), img.size(2)) for img in imgs] if imgs is not None else None for imgs in ref_image_hidden_states] l_effective_ref_img_len = [[(ref_img_size[0] // p) * (ref_img_size[1] // p) for ref_img_size in _ref_img_sizes] if _ref_img_sizes is not None else [0] for _ref_img_sizes in ref_img_sizes] else: ref_img_sizes = [None for _ in range(batch_size)] l_effective_ref_img_len = [[0] for _ in range(batch_size)] max_ref_img_len = max([sum(ref_img_len) for ref_img_len in l_effective_ref_img_len]) max_img_len = max(l_effective_img_len) # ref image patch embeddings flat_ref_img_hidden_states = [] for i in range(batch_size): if ref_img_sizes[i] is not None: imgs = [] for ref_img in ref_image_hidden_states[i]: C, H, W = ref_img.size() ref_img = rearrange(ref_img, 'c (h p1) (w p2) -> (h w) (p1 p2 c)', p1=p, p2=p) imgs.append(ref_img) img = torch.cat(imgs, dim=0) flat_ref_img_hidden_states.append(img) else: flat_ref_img_hidden_states.append(None) # image patch embeddings flat_hidden_states = [] for i in range(batch_size): img = hidden_states[i] C, H, W = img.size() img = rearrange(img, 'c (h p1) (w p2) -> (h w) (p1 p2 c)', p1=p, p2=p) flat_hidden_states.append(img) padded_ref_img_hidden_states = torch.zeros(batch_size, max_ref_img_len, flat_hidden_states[0].shape[-1], device=device, dtype=flat_hidden_states[0].dtype) padded_ref_img_mask = torch.zeros(batch_size, max_ref_img_len, dtype=torch.bool, device=device) for i in range(batch_size): if ref_img_sizes[i] is not None: padded_ref_img_hidden_states[i, :sum(l_effective_ref_img_len[i])] = flat_ref_img_hidden_states[i] padded_ref_img_mask[i, :sum(l_effective_ref_img_len[i])] = True padded_hidden_states = torch.zeros(batch_size, max_img_len, flat_hidden_states[0].shape[-1], device=device, dtype=flat_hidden_states[0].dtype) padded_img_mask = torch.zeros(batch_size, max_img_len, dtype=torch.bool, device=device) for i in range(batch_size): padded_hidden_states[i, :l_effective_img_len[i]] = flat_hidden_states[i] padded_img_mask[i, :l_effective_img_len[i]] = True return ( padded_hidden_states, padded_ref_img_hidden_states, padded_img_mask, padded_ref_img_mask, l_effective_ref_img_len, l_effective_img_len, ref_img_sizes, img_sizes, ) def forward( self, hidden_states: torch.Tensor, timestep: torch.Tensor, encoder_hidden_states: torch.Tensor, encoder_attention_mask: torch.Tensor, ref_image_hidden_states: Optional[List[List[torch.Tensor]]] = None, attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> Union[torch.Tensor, Transformer2DModelOutput]: if attention_kwargs is not None: attention_kwargs = attention_kwargs.copy() lora_scale = attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." ) # 1. Condition, positional & patch embedding batch_size = len(hidden_states) is_hidden_states_tensor = isinstance(hidden_states, torch.Tensor) if is_hidden_states_tensor: assert hidden_states.ndim == 4 hidden_states = [_hidden_states for _hidden_states in hidden_states] device = hidden_states[0].device temb, encoder_hidden_states = self.time_caption_embed(hidden_states, timestep, encoder_hidden_states) ( hidden_states, ref_image_hidden_states, img_mask, ref_img_mask, l_effective_ref_img_len, l_effective_img_len, ref_img_sizes, img_sizes, ) = self.flat_and_pad_to_seq(hidden_states, ref_image_hidden_states) ( context_rotary_emb, ref_img_rotary_emb, noise_rotary_emb, rotary_emb, encoder_seq_lengths, seq_lengths, ) = self.rope_embedder( encoder_attention_mask, l_effective_ref_img_len, l_effective_img_len, ref_img_sizes, img_sizes, device, ) # 2. Context & noise refinement for layer in self.context_refiner: encoder_hidden_states = layer(encoder_hidden_states, encoder_attention_mask, context_rotary_emb) combined_img_hidden_states = self.img_patch_embed_and_refine( hidden_states, ref_image_hidden_states, img_mask, ref_img_mask, noise_rotary_emb, ref_img_rotary_emb, l_effective_ref_img_len, l_effective_img_len, temb, ) # 3. Joint Transformer blocks max_seq_len = max(seq_lengths) use_mask = len(set(seq_lengths)) > 1 attention_mask = hidden_states.new_zeros(batch_size, max_seq_len, dtype=torch.bool) joint_hidden_states = hidden_states.new_zeros(batch_size, max_seq_len, self.config.hidden_size) for i, (encoder_seq_len, seq_len) in enumerate(zip(encoder_seq_lengths, seq_lengths)): attention_mask[i, :seq_len] = True joint_hidden_states[i, :encoder_seq_len] = encoder_hidden_states[i, :encoder_seq_len] joint_hidden_states[i, encoder_seq_len:seq_len] = combined_img_hidden_states[i, :seq_len - encoder_seq_len] hidden_states = joint_hidden_states for layer in self.layers: if torch.is_grad_enabled() and self.gradient_checkpointing: hidden_states = self._gradient_checkpointing_func( layer, hidden_states, attention_mask if use_mask else None, rotary_emb, temb ) else: hidden_states = layer(hidden_states, attention_mask if use_mask else None, rotary_emb, temb) # 4. Output norm & projection hidden_states = self.norm_out(hidden_states, temb) # 5. Unpatchify p = self.config.patch_size output = [] for i, (img_size, img_len, seq_len) in enumerate(zip(img_sizes, l_effective_img_len, seq_lengths)): height, width = img_size output.append(rearrange(hidden_states[i][seq_len - img_len:seq_len], '(h w) (p1 p2 c) -> c (h p1) (w p2)', h=height // p, w=width // p, p1=p, p2=p)) if is_hidden_states_tensor: output = torch.stack(output, dim=0) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)