Spaces:
Running
Running
| import torch | |
| from transformers import pipeline | |
| import gradio as gr | |
| def transcript_audio(audio_file): | |
| # Initialize the speech recognition pipeline | |
| pipe = pipeline( | |
| "automatic-speech-recognition", | |
| model="openai/whisper-tiny.en", | |
| chunk_length_s=30, | |
| ) | |
| # Transcribe the audio file and return the result | |
| result = pipe(audio_file, batch_size=8)["text"] | |
| return result | |
| audio_input = gr.Audio(sources="upload", type="filepath") # Audio input | |
| output_text = gr.Textbox() # Text output | |
| iface = gr.Interface(fn=transcript_audio, | |
| inputs=audio_input, outputs=output_text, | |
| title="Audio Transcription App: Summarize your audio - Created by Nabeel", | |
| description="Upload the audio file") | |
| iface.launch(server_name="0.0.0.0", server_port=7860,share=True) | |