|
|
import os |
|
|
import time |
|
|
import re |
|
|
import gc |
|
|
import threading |
|
|
from itertools import islice |
|
|
from datetime import datetime |
|
|
import gradio as gr |
|
|
from llama_cpp import Llama |
|
|
from llama_cpp.llama_speculative import LlamaPromptLookupDecoding |
|
|
from huggingface_hub import hf_hub_download |
|
|
from duckduckgo_search import DDGS |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cancel_event = threading.Event() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
REQUIRED_SPACE_BYTES = 5 * 1024 ** 3 |
|
|
|
|
|
MODELS = { |
|
|
"Taiwan-tinyllama-v1.0-chat (Q8_0)": { |
|
|
"repo_id": "NapYang/DavidLanz-Taiwan-tinyllama-v1.0-chat.GGUF", |
|
|
"filename": "Taiwan-tinyllama-v1.0-chat-Q8_0.gguf", |
|
|
"description": "Taiwan-tinyllama-v1.0-chat (Q8_0)" |
|
|
}, |
|
|
"Llama-3.2-Taiwan-3B-Instruct (Q4_K_M)": { |
|
|
"repo_id": "itlwas/Llama-3.2-Taiwan-3B-Instruct-Q4_K_M-GGUF", |
|
|
"filename": "llama-3.2-taiwan-3b-instruct-q4_k_m.gguf", |
|
|
"description": "Llama-3.2-Taiwan-3B-Instruct (Q4_K_M)" |
|
|
}, |
|
|
"MiniCPM3-4B (Q4_K_M)": { |
|
|
"repo_id": "openbmb/MiniCPM3-4B-GGUF", |
|
|
"filename": "minicpm3-4b-q4_k_m.gguf", |
|
|
"description": "MiniCPM3-4B (Q4_K_M)" |
|
|
}, |
|
|
"Qwen2.5-3B-Instruct (Q4_K_M)": { |
|
|
"repo_id": "Qwen/Qwen2.5-3B-Instruct-GGUF", |
|
|
"filename": "qwen2.5-3b-instruct-q4_k_m.gguf", |
|
|
"description": "Qwen2.5-3B-Instruct (Q4_K_M)" |
|
|
}, |
|
|
"Qwen2.5-7B-Instruct (Q2_K)": { |
|
|
"repo_id": "Qwen/Qwen2.5-7B-Instruct-GGUF", |
|
|
"filename": "qwen2.5-7b-instruct-q2_k.gguf", |
|
|
"description": "Qwen2.5-7B Instruct (Q2_K)" |
|
|
}, |
|
|
"Gemma-3-4B-IT (Q4_K_M)": { |
|
|
"repo_id": "unsloth/gemma-3-4b-it-GGUF", |
|
|
"filename": "gemma-3-4b-it-Q4_K_M.gguf", |
|
|
"description": "Gemma 3 4B IT (Q4_K_M)" |
|
|
}, |
|
|
"Phi-4-mini-Instruct (Q4_K_M)": { |
|
|
"repo_id": "unsloth/Phi-4-mini-instruct-GGUF", |
|
|
"filename": "Phi-4-mini-instruct-Q4_K_M.gguf", |
|
|
"description": "Phi-4 Mini Instruct (Q4_K_M)" |
|
|
}, |
|
|
"Meta-Llama-3.1-8B-Instruct (Q2_K)": { |
|
|
"repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct-GGUF", |
|
|
"filename": "Meta-Llama-3.1-8B-Instruct.Q2_K.gguf", |
|
|
"description": "Meta-Llama-3.1-8B-Instruct (Q2_K)" |
|
|
}, |
|
|
"DeepSeek-R1-Distill-Llama-8B (Q2_K)": { |
|
|
"repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF", |
|
|
"filename": "DeepSeek-R1-Distill-Llama-8B-Q2_K.gguf", |
|
|
"description": "DeepSeek-R1-Distill-Llama-8B (Q2_K)" |
|
|
}, |
|
|
"Mistral-7B-Instruct-v0.3 (IQ3_XS)": { |
|
|
"repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF", |
|
|
"filename": "Mistral-7B-Instruct-v0.3.IQ3_XS.gguf", |
|
|
"description": "Mistral-7B-Instruct-v0.3 (IQ3_XS)" |
|
|
}, |
|
|
"Qwen2.5-Coder-7B-Instruct (Q2_K)": { |
|
|
"repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct-GGUF", |
|
|
"filename": "qwen2.5-coder-7b-instruct-q2_k.gguf", |
|
|
"description": "Qwen2.5-Coder-7B-Instruct (Q2_K)" |
|
|
}, |
|
|
} |
|
|
|
|
|
LOADED_MODELS = {} |
|
|
CURRENT_MODEL_NAME = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def try_load_model(model_path): |
|
|
try: |
|
|
return Llama( |
|
|
model_path=model_path, |
|
|
n_ctx=4096, |
|
|
n_threads=2, |
|
|
n_threads_batch=1, |
|
|
n_batch=256, |
|
|
n_gpu_layers=0, |
|
|
use_mlock=True, |
|
|
use_mmap=True, |
|
|
verbose=False, |
|
|
logits_all=True, |
|
|
draft_model=LlamaPromptLookupDecoding(num_pred_tokens=2), |
|
|
) |
|
|
except Exception as e: |
|
|
return str(e) |
|
|
|
|
|
def download_model(selected_model): |
|
|
hf_hub_download( |
|
|
repo_id=selected_model["repo_id"], |
|
|
filename=selected_model["filename"], |
|
|
local_dir="./models", |
|
|
local_dir_use_symlinks=False, |
|
|
) |
|
|
|
|
|
def validate_or_download_model(selected_model): |
|
|
model_path = os.path.join("models", selected_model["filename"]) |
|
|
os.makedirs("models", exist_ok=True) |
|
|
if not os.path.exists(model_path): |
|
|
download_model(selected_model) |
|
|
result = try_load_model(model_path) |
|
|
if isinstance(result, str): |
|
|
try: |
|
|
os.remove(model_path) |
|
|
except Exception: |
|
|
pass |
|
|
download_model(selected_model) |
|
|
result = try_load_model(model_path) |
|
|
if isinstance(result, str): |
|
|
raise Exception(f"Model load failed: {result}") |
|
|
return result |
|
|
|
|
|
def load_model(model_name): |
|
|
global LOADED_MODELS, CURRENT_MODEL_NAME |
|
|
if model_name in LOADED_MODELS: |
|
|
return LOADED_MODELS[model_name] |
|
|
selected_model = MODELS[model_name] |
|
|
model = validate_or_download_model(selected_model) |
|
|
LOADED_MODELS[model_name] = model |
|
|
CURRENT_MODEL_NAME = model_name |
|
|
return model |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def retrieve_context(query, max_results=6, max_chars_per_result=600): |
|
|
try: |
|
|
with DDGS() as ddgs: |
|
|
results = list(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results)) |
|
|
context = "" |
|
|
for i, result in enumerate(results, start=1): |
|
|
title = result.get("title", "No Title") |
|
|
snippet = result.get("body", "")[:max_chars_per_result] |
|
|
context += f"Result {i}:\nTitle: {title}\nSnippet: {snippet}\n\n" |
|
|
return context.strip() |
|
|
except Exception: |
|
|
return "" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def chat_response(user_message, chat_history, system_prompt, enable_search, |
|
|
max_results, max_chars, model_name, max_tokens, temperature, top_k, top_p, repeat_penalty): |
|
|
""" |
|
|
Generator function that: |
|
|
- Uses the chat history (list of dicts) from the Chatbot. |
|
|
- Appends the new user message. |
|
|
- Optionally retrieves web search context. |
|
|
- Streams the assistant response token-by-token. |
|
|
- Checks for cancellation. |
|
|
""" |
|
|
|
|
|
cancel_event.clear() |
|
|
|
|
|
|
|
|
internal_history = list(chat_history) if chat_history else [] |
|
|
internal_history.append({"role": "user", "content": user_message}) |
|
|
|
|
|
|
|
|
debug_message = "" |
|
|
if enable_search: |
|
|
debug_message = "Initiating web search..." |
|
|
yield internal_history, debug_message |
|
|
search_result = [""] |
|
|
def do_search(): |
|
|
search_result[0] = retrieve_context(user_message, max_results, max_chars) |
|
|
search_thread = threading.Thread(target=do_search) |
|
|
search_thread.start() |
|
|
search_thread.join(timeout=2) |
|
|
retrieved_context = search_result[0] |
|
|
if retrieved_context: |
|
|
debug_message = f"Web search results:\n\n{retrieved_context}" |
|
|
else: |
|
|
debug_message = "Web search returned no results or timed out." |
|
|
else: |
|
|
retrieved_context = "" |
|
|
debug_message = "Web search disabled." |
|
|
|
|
|
|
|
|
if enable_search and retrieved_context: |
|
|
augmented_user_input = ( |
|
|
f"{system_prompt.strip()}\n\n" |
|
|
"Use the following recent web search context to help answer the query:\n\n" |
|
|
f"{retrieved_context}\n\n" |
|
|
f"User Query: {user_message}" |
|
|
) |
|
|
else: |
|
|
augmented_user_input = f"{system_prompt.strip()}\n\nUser Query: {user_message}" |
|
|
|
|
|
|
|
|
messages = internal_history[:-1] + [{"role": "user", "content": augmented_user_input}] |
|
|
|
|
|
|
|
|
model = load_model(model_name) |
|
|
|
|
|
|
|
|
internal_history.append({"role": "assistant", "content": ""}) |
|
|
assistant_message = "" |
|
|
|
|
|
try: |
|
|
stream = model.create_chat_completion( |
|
|
messages=messages, |
|
|
max_tokens=max_tokens, |
|
|
temperature=temperature, |
|
|
top_k=top_k, |
|
|
top_p=top_p, |
|
|
repeat_penalty=repeat_penalty, |
|
|
stream=True, |
|
|
) |
|
|
for chunk in stream: |
|
|
|
|
|
if cancel_event.is_set(): |
|
|
assistant_message += "\n\n[Response generation cancelled by user]" |
|
|
internal_history[-1]["content"] = assistant_message |
|
|
yield internal_history, debug_message |
|
|
break |
|
|
|
|
|
if "choices" in chunk: |
|
|
delta = chunk["choices"][0]["delta"].get("content", "") |
|
|
assistant_message += delta |
|
|
internal_history[-1]["content"] = assistant_message |
|
|
yield internal_history, debug_message |
|
|
if chunk["choices"][0].get("finish_reason", ""): |
|
|
break |
|
|
except Exception as e: |
|
|
internal_history[-1]["content"] = f"Error: {e}" |
|
|
yield internal_history, debug_message |
|
|
gc.collect() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def cancel_generation(): |
|
|
cancel_event.set() |
|
|
return "Cancellation requested." |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks(title="Multi-GGUF LLM Inference") as demo: |
|
|
gr.Markdown("## 🧠 Multi-GGUF LLM Inference with Web Search") |
|
|
gr.Markdown("Interact with the model. Select your model, set your system prompt, and adjust parameters on the left.") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(scale=3): |
|
|
default_model = list(MODELS.keys())[0] if MODELS else "No models available" |
|
|
model_dropdown = gr.Dropdown( |
|
|
label="Select Model", |
|
|
choices=list(MODELS.keys()) if MODELS else [], |
|
|
value=default_model, |
|
|
info="Choose from available models." |
|
|
) |
|
|
today = datetime.now().strftime('%Y-%m-%d') |
|
|
default_prompt = f"You are a helpful assistant. Today is {today}. Please leverage the latest web data when responding to queries." |
|
|
system_prompt_text = gr.Textbox(label="System Prompt", |
|
|
value=default_prompt, |
|
|
lines=3, |
|
|
info="Define the base context for the AI's responses.") |
|
|
gr.Markdown("### Generation Parameters") |
|
|
max_tokens_slider = gr.Slider(label="Max Tokens", minimum=64, maximum=1024, value=1024, step=32, |
|
|
info="Maximum tokens for the response.") |
|
|
temperature_slider = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7, step=0.1, |
|
|
info="Controls the randomness of the output.") |
|
|
top_k_slider = gr.Slider(label="Top-K", minimum=1, maximum=100, value=40, step=1, |
|
|
info="Limits token candidates to the top-k tokens.") |
|
|
top_p_slider = gr.Slider(label="Top-P (Nucleus Sampling)", minimum=0.1, maximum=1.0, value=0.95, step=0.05, |
|
|
info="Limits token candidates to a cumulative probability threshold.") |
|
|
repeat_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.1, step=0.1, |
|
|
info="Penalizes token repetition to improve diversity.") |
|
|
gr.Markdown("### Web Search Settings") |
|
|
enable_search_checkbox = gr.Checkbox(label="Enable Web Search", value=False, |
|
|
info="Include recent search context to improve answers.") |
|
|
max_results_number = gr.Number(label="Max Search Results", value=6, precision=0, |
|
|
info="Maximum number of search results to retrieve.") |
|
|
max_chars_number = gr.Number(label="Max Chars per Result", value=600, precision=0, |
|
|
info="Maximum characters to retrieve per search result.") |
|
|
clear_button = gr.Button("Clear Chat") |
|
|
cancel_button = gr.Button("Cancel Generation") |
|
|
with gr.Column(scale=7): |
|
|
chatbot = gr.Chatbot(label="Chat", type="messages") |
|
|
msg_input = gr.Textbox(label="Your Message", placeholder="Enter your message and press Enter") |
|
|
search_debug = gr.Markdown(label="Web Search Debug") |
|
|
|
|
|
def clear_chat(): |
|
|
return [], "", "" |
|
|
|
|
|
clear_button.click(fn=clear_chat, outputs=[chatbot, msg_input, search_debug]) |
|
|
|
|
|
cancel_button.click(fn=cancel_generation, outputs=search_debug) |
|
|
|
|
|
|
|
|
msg_input.submit( |
|
|
fn=chat_response, |
|
|
inputs=[msg_input, chatbot, system_prompt_text, enable_search_checkbox, |
|
|
max_results_number, max_chars_number, model_dropdown, |
|
|
max_tokens_slider, temperature_slider, top_k_slider, top_p_slider, repeat_penalty_slider], |
|
|
outputs=[chatbot, search_debug], |
|
|
|
|
|
|
|
|
) |
|
|
|
|
|
demo.launch() |
|
|
|