Spaces:
Runtime error
Runtime error
| # modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from diffusers.models.attention_processor import AttnProcessor2_0 | |
| from diffusers.models.attention_processor import XFormersAttnProcessor | |
| try: | |
| import xformers | |
| import xformers.ops | |
| xformers_available = True | |
| except Exception as e: | |
| xformers_available = False | |
| class RegionControler(object): | |
| def __init__(self) -> None: | |
| self.prompt_image_conditioning = [] | |
| region_control = RegionControler() | |
| class AttnProcessor(nn.Module): | |
| r""" | |
| Default processor for performing attention-related computations. | |
| """ | |
| def __init__( | |
| self, | |
| hidden_size=None, | |
| cross_attention_dim=None, | |
| ): | |
| super().__init__() | |
| def forward( | |
| self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb=None, | |
| ): | |
| residual = hidden_states | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| query = attn.head_to_batch_dim(query) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| class IPAttnProcessor(nn.Module): | |
| r""" | |
| Attention processor for IP-Adapater. | |
| Args: | |
| hidden_size (`int`): | |
| The hidden size of the attention layer. | |
| cross_attention_dim (`int`): | |
| The number of channels in the `encoder_hidden_states`. | |
| scale (`float`, defaults to 1.0): | |
| the weight scale of image prompt. | |
| num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): | |
| The context length of the image features. | |
| """ | |
| def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4): | |
| super().__init__() | |
| self.hidden_size = hidden_size | |
| self.cross_attention_dim = cross_attention_dim | |
| self.scale = scale | |
| self.num_tokens = num_tokens | |
| self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
| self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
| def forward( | |
| self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb=None, | |
| ): | |
| residual = hidden_states | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| else: | |
| # get encoder_hidden_states, ip_hidden_states | |
| end_pos = encoder_hidden_states.shape[1] - self.num_tokens | |
| encoder_hidden_states, ip_hidden_states = encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :] | |
| if attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| query = attn.head_to_batch_dim(query) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| if xformers_available: | |
| hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
| else: | |
| attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # for ip-adapter | |
| ip_key = self.to_k_ip(ip_hidden_states) | |
| ip_value = self.to_v_ip(ip_hidden_states) | |
| ip_key = attn.head_to_batch_dim(ip_key) | |
| ip_value = attn.head_to_batch_dim(ip_value) | |
| if xformers_available: | |
| ip_hidden_states = self._memory_efficient_attention_xformers(query, ip_key, ip_value, None) | |
| else: | |
| ip_attention_probs = attn.get_attention_scores(query, ip_key, None) | |
| ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) | |
| ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states) | |
| # region control | |
| if len(region_control.prompt_image_conditioning) == 1: | |
| region_mask = region_control.prompt_image_conditioning[0].get('region_mask', None) | |
| if region_mask is not None: | |
| h, w = region_mask.shape[:2] | |
| ratio = (h * w / query.shape[1]) ** 0.5 | |
| mask = F.interpolate(region_mask[None, None], scale_factor=1/ratio, mode='nearest').reshape([1, -1, 1]) | |
| else: | |
| mask = torch.ones_like(ip_hidden_states) | |
| ip_hidden_states = ip_hidden_states * mask | |
| hidden_states = hidden_states + self.scale * ip_hidden_states | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| def _memory_efficient_attention_xformers(self, query, key, value, attention_mask): | |
| # TODO attention_mask | |
| query = query.contiguous() | |
| key = key.contiguous() | |
| value = value.contiguous() | |
| hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) | |
| # hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
| return hidden_states | |
| class AttnProcessor2_0(torch.nn.Module): | |
| r""" | |
| Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
| """ | |
| def __init__( | |
| self, | |
| hidden_size=None, | |
| cross_attention_dim=None, | |
| ): | |
| super().__init__() | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
| def forward( | |
| self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb=None, | |
| ): | |
| residual = hidden_states | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| if attention_mask is not None: | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| # scaled_dot_product_attention expects attention_mask shape to be | |
| # (batch, heads, source_length, target_length) | |
| attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| class IPAttnProcessor2_0(torch.nn.Module): | |
| r""" | |
| Attention processor for IP-Adapater for PyTorch 2.0. | |
| Args: | |
| hidden_size (`int`): | |
| The hidden size of the attention layer. | |
| cross_attention_dim (`int`): | |
| The number of channels in the `encoder_hidden_states`. | |
| scale (`float`, defaults to 1.0): | |
| the weight scale of image prompt. | |
| num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): | |
| The context length of the image features. | |
| """ | |
| def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4): | |
| super().__init__() | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
| self.hidden_size = hidden_size | |
| self.cross_attention_dim = cross_attention_dim | |
| self.scale = scale | |
| self.num_tokens = num_tokens | |
| self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
| self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
| def __call__( | |
| self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb=None, | |
| ): | |
| # 保存输入的 hidden_states,用于最后的残差连接。 | |
| residual = hidden_states | |
| # 检查是否有 空间归一化 (spatial normalization) | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| # hidden_states 可能是一个 4D 张量(比如图像数据),也可能是一个 3D 张量(比如文本数据) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| # 调整其形状为 (batch_size, channel, height * width) | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| # 选择 encoder_hidden_states 如果有的话,否则使用 hidden_states 作为输入。sequence_length 表示序列长度,通常是时间步或图像的像素数量。 | |
| batch_size, sequence_length, _ = (hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape) | |
| # 处理并调整注意力掩码 (attention mask),使其符合 scaled_dot_product_attention 函数的要求。 | |
| if attention_mask is not None: | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| # scaled_dot_product_attention expects attention_mask shape to be | |
| # (batch, heads, source_length, target_length) | |
| attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
| # 对 hidden_states 进行组归一化 | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| # 通过线性变换将 hidden_states 映射到query向量 | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| else: | |
| # 分割 encoder_hidden_states 和 ip_hidden_states | |
| end_pos = encoder_hidden_states.shape[1] - self.num_tokens | |
| encoder_hidden_states, ip_hidden_states = ( | |
| encoder_hidden_states[:, :end_pos, :], | |
| encoder_hidden_states[:, end_pos:, :], | |
| ) | |
| if attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| # 将 encoder_hidden_states 映射为多头自注意力计算中的键和值 | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| # 获取每个注意力头的维度 | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) | |
| # hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| # for ip-adapter | |
| # 投影 ip_hidden_states 得到其键和值 | |
| ip_key = self.to_k_ip(ip_hidden_states) | |
| ip_value = self.to_v_ip(ip_hidden_states) | |
| ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| # 注意力计算 得到图像提示的隐藏状态 | |
| ip_hidden_states = F.scaled_dot_product_attention(query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False) | |
| # ip_hidden_states = xformers.ops.memory_efficient_attention(query, ip_key, ip_value, attn_bias=None) | |
| ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| ip_hidden_states = ip_hidden_states.to(query.dtype) | |
| # 通过给图像提示隐藏状态加权缩放后与原始隐藏状态相加,实现跨域信息融合 | |
| hidden_states = hidden_states + self.scale * ip_hidden_states | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| # 如果输入是 4D 张量(图像数据),则将 hidden_states 转换回原始形状。 | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| # 如果启用了残差连接,则将 residual 添加回 hidden_states | |
| hidden_states = hidden_states + residual | |
| # 对输出进行缩放 | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| ## for controlnet | |
| class CNAttnProcessor: | |
| r""" | |
| Default processor for performing attention-related computations. | |
| """ | |
| def __init__(self, num_tokens=4): | |
| self.num_tokens = num_tokens | |
| def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, *args, **kwargs,): | |
| residual = hidden_states | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| else: | |
| end_pos = encoder_hidden_states.shape[1] - self.num_tokens | |
| encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text | |
| if attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| query = attn.head_to_batch_dim(query) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| class CNAttnProcessor2_0: | |
| r""" | |
| Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
| """ | |
| def __init__(self, num_tokens=4): | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
| self.num_tokens = num_tokens | |
| def __call__( | |
| self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb=None, | |
| *args, | |
| **kwargs, | |
| ): | |
| residual = hidden_states | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| if attention_mask is not None: | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| # scaled_dot_product_attention expects attention_mask shape to be | |
| # (batch, heads, source_length, target_length) | |
| attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| else: | |
| end_pos = encoder_hidden_states.shape[1] - self.num_tokens | |
| encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text | |
| if attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| class IPAttnProcessor2_02(torch.nn.Module): | |
| r""" | |
| Attention processor for IP-Adapater for PyTorch 2.0. | |
| Args: | |
| hidden_size (`int`): | |
| The hidden size of the attention layer. | |
| cross_attention_dim (`int`): | |
| The number of channels in the `encoder_hidden_states`. | |
| scale (`float`, defaults to 1.0): | |
| the weight scale of image prompt. | |
| num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): | |
| The context length of the image features. | |
| """ | |
| def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4): | |
| super().__init__() | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
| self.hidden_size = hidden_size | |
| self.cross_attention_dim = cross_attention_dim | |
| self.scale = scale | |
| self.num_tokens = num_tokens | |
| self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
| self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
| def forward( | |
| self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb=None, | |
| ): | |
| residual = hidden_states | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| if attention_mask is not None: | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| # scaled_dot_product_attention expects attention_mask shape to be | |
| # (batch, heads, source_length, target_length) | |
| attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| else: | |
| # get encoder_hidden_states, ip_hidden_states | |
| end_pos = encoder_hidden_states.shape[1] - self.num_tokens | |
| encoder_hidden_states, ip_hidden_states = ( | |
| encoder_hidden_states[:, :end_pos, :], | |
| encoder_hidden_states[:, end_pos:, :], | |
| ) | |
| if attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
| # hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| # hidden_states = memory_efficient_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0) | |
| # for ip-adapter | |
| ip_key = self.to_k_ip(ip_hidden_states) | |
| ip_value = self.to_v_ip(ip_hidden_states) | |
| ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # ip_hidden_states = F.scaled_dot_product_attention(query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False) | |
| # ip_hidden_states = xformers.ops.memory_efficient_attention(query, ip_key, ip_value, None) | |
| ip_hidden_states = self._memory_efficient_attention_xformers(query, ip_key, ip_value, None) | |
| with torch.no_grad(): | |
| self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1) | |
| #print(self.attn_map.shape) | |
| ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| ip_hidden_states = ip_hidden_states.to(query.dtype) | |
| # region control | |
| if len(region_control.prompt_image_conditioning) == 1: | |
| region_mask = region_control.prompt_image_conditioning[0].get('region_mask', None) | |
| if region_mask is not None: | |
| query = query.reshape([-1, query.shape[-2], query.shape[-1]]) | |
| h, w = region_mask.shape[:2] | |
| ratio = (h * w / query.shape[1]) ** 0.5 | |
| mask = F.interpolate(region_mask[None, None], scale_factor=1/ratio, mode='nearest').reshape([1, -1, 1]) | |
| else: | |
| mask = torch.ones_like(ip_hidden_states) | |
| ip_hidden_states = ip_hidden_states * mask | |
| # ip_hidden_states = memory_efficient_attention(query, ip_key, ip_value, attn_mask=None, dropout_p=0.0) | |
| ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * (ip_key.shape[-1] // attn.heads)) | |
| hidden_states = hidden_states + self.scale * ip_hidden_states | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| def _memory_efficient_attention_xformers(self, query, key, value, attention_mask): | |
| # TODO attention_mask | |
| query = query.contiguous() | |
| key = key.contiguous() | |
| value = value.contiguous() | |
| hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) | |
| # hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
| return hidden_states | |
| class IPAttnProcessor2_00(torch.nn.Module): | |
| r""" | |
| Attention processor for IP-Adapater for PyTorch 2.0. | |
| Args: | |
| hidden_size (`int`): | |
| The hidden size of the attention layer. | |
| cross_attention_dim (`int`): | |
| The number of channels in the `encoder_hidden_states`. | |
| scale (`float`, defaults to 1.0): | |
| the weight scale of image prompt. | |
| num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): | |
| The context length of the image features. | |
| """ | |
| def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4): | |
| super().__init__() | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
| self.hidden_size = hidden_size | |
| self.cross_attention_dim = cross_attention_dim | |
| self.scale = scale | |
| self.num_tokens = num_tokens | |
| self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
| self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) | |
| def __call__( | |
| self, | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb=None, | |
| ): | |
| residual = hidden_states | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| if attention_mask is not None: | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| # scaled_dot_product_attention expects attention_mask shape to be | |
| # (batch, heads, source_length, target_length) | |
| attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| else: | |
| # get encoder_hidden_states, ip_hidden_states | |
| end_pos = encoder_hidden_states.shape[1] - self.num_tokens | |
| encoder_hidden_states, ip_hidden_states = ( | |
| encoder_hidden_states[:, :end_pos, :], | |
| encoder_hidden_states[:, end_pos:, :], | |
| ) | |
| if attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| # for ip-adapter | |
| ip_key = self.to_k_ip(ip_hidden_states) | |
| ip_value = self.to_v_ip(ip_hidden_states) | |
| ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| ip_hidden_states = F.scaled_dot_product_attention( | |
| query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False | |
| ) | |
| ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| ip_hidden_states = ip_hidden_states.to(query.dtype) | |
| hidden_states = hidden_states + self.scale * ip_hidden_states | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| ## for controlnet | |